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Abstract

Static binary bug detection has been a prominent approach
for ensuring the security of binaries used in our daily lives.
However, the type information lost in binaries prevents the
improvement opportunity for a static analyzer to utilize type
information to prune away infeasible facts and increase anal-
ysis precision. To make binary bug detection more practical
with higher precision, in this work, we propose the first
hybrid-sensitive type inference, MANTA, that combines data-
flow analysis with different sensitivities to complement each
other and infer precise types for many variables. The inferred
types are then used to assist with bug detection by pruning
infeasible indirect call targets and data dependencies. Our
experiments indicate MANTA outperforms prior work by in-
ferring types with 78.7% precision and 97.2% recall. Based
on the inferred types, we can prune away 63.9% more infea-
sible indirect-call targets compared to existing type analysis
techniques and perform program slicing on binaries with
61.1% similarity to that on source code. Moreover, MANTA
has led to 86 new developer-confirmed vulnerabilities in
many popular IoT firmware, with 64 CVE/PSV IDs assigned.
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1 Introduction

Static binary analysis is one of the most powerful techniques
for security analysis, which has been widely used in binary-
only scenarios, such as detecting vulnerabilities in embedded
firmware [15, 64, 81], and industrial control systems [62]. De-
spite its usefulness, existing binary-level static bug detection
tools still suffer from the problem of low precision. Exist-
ing studies [52, 54] have revealed that the main reason for
this precision gap is the loss of type information in binaries.
Type information has been widely utilized to filter infea-
sible targets in both indirect call analysis [8, 53] and data
dependency analysis [11, 25, 54, 66]. However, the types lost
during compilation prevent the opportunities to utilize type
information to build a better bug-detection tool for binaries.
To make type-assisted binary static analysis possible, in this
paper, we explore applying type inference to recover variable
types in stripped binaries with high precision and recall to
assist with static bug detection in binaries.

Problem. Despite binary type inference being a funda-
mental topic with long-term development, existing tech-
niques still have the following limitations. That is, they either
(i) produce an over-approximated type inference result or (ii)
infer unknown types for many variables. As a result, the in-
ferred types cannot effectively be utilized to assist with static
binary analysis.

Specifically, on the one hand, a low-precision type infer-
ence, such as flow-insensitive or context-insensitive anal-
ysis [26, 45, 57], would indiscriminately collect and unify
all possible type hints to infer each variable’s type. Since
the collected type hints could correspond to many variables
of different types, the inferred type for each single variable
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Figure 1. Overall Design of MANTA.

would be over-approximated. As represented by the blue re-
gion in Figure 2(a), where the profiling data is collected from
our experiment on several real-world projects and bench-
marks!, a flow- and context-insensitive analysis would over-
approximately infer types for many variables. On the other
hand, a high-precision type inference, such as flow-sensitive
or context-sensitive analysis [4, 29, 46, 59, 61], would avoid
indiscriminately unifying type hints together by propagating
type hints along control flow equipped with strong updates,
or by propagating type hints along valid calling contexts.
However, they cannot infer the type of a variable if no valid
type hints are collected, thereby leaving types of many vari-
ables to be unknown. The blue region in Figure 2(b) reveals a
large proportion of variables whose type cannot be inferred
by a flow- and context-sensitive analysis.

Observation. Our insight is that a hybrid combination of
analyses with different sensitivities can complement each
other, allowing for the precise type inference for many vari-
ables. On the one hand, a high-precision analysis (e.g., flow-
sensitive) could precisely infer types over-approximately
inferred by a low-precision analysis. Based on the results of
our experiments, the brown region in Figure 2(a) shows the
proportion of over-approximated type variables precisely in-
ferred by a flow- and context-sensitive analysis. On the other
hand, for variables whose types are inferred as unknown by
a high-precision analysis, a low-precision analysis could
instead capture ignored type hints and precisely infer the
variable’s type. The brown region in Figure 2(b) shows the
distribution of unknown type being able to be precisely in-
ferred by a flow- and context-insensitive analysis.

Solution. Based on this observation, we can precisely
infer types for more variables by using a high-precision
analysis to refine over-approximated types, and using a low-
precision analysis to infer types for type-unknown variables.
To do so, we design the first hybrid-sensitive type inference
approach, as shown in Figure 1, that progressively increases
precision to infer variable types. Specifically, it starts with a
low-precision global flow- and context-insensitive analysis
to thoroughly infer types for as many variables as possible.
Then, only for the over-approximated types, higher precision

IThe used projects and benchmarks are the same as those listed in Table 3
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Figure 2. Profiling data on 118 binaries from experiments.

context-sensitive and flow-sensitive analyses are conducted
progressively on top of the data dependence graph (DDG)
and control flow graph (CFG) to infer more precise type
results until the type is precisely resolved as a singleton. In
this way, the hybrid-sensitive analysis can infer less over-
approximated variable types with staging refinement and be
able to infer types for more variables by starting with lower
precision analyses to capture type hints thoroughly.
Similar to existing binary type inference methods [26, 45,
57], achieving absolute soundness in inferring all types is
challenging for MANTA. Nevertheless, with a high recall rate
of 97.2%, MANTA can effectively assist with practical bug
detection in stripped binaries from two perspectives. First, a
type-based indirect call analysis utilizes the inferred types
to validate the type compatibility between arguments at
indirect call sites and function parameters to filter infeasible



indirect-call targets. Second, type-based data dependency
refinement can utilize the inferred types to identify the based
pointer at each binary arithmetic instruction, helping with
more precise DDG construction. Then, a program slicing-
based bug detection technique [67, 72] is performed on DDG
to precisely detect a series of vulnerabilities (§5.2).

We have implemented a tool called MANTA, and exhaus-
tively evaluated it against several type inference techniques
and binary bug detection tools on several real-world projects
and IoT firmware. We make the following contributions:

e Hybrid-Sensitive Type Inference: We propose a hybrid-
sensitive type inference to infer types for most vari-
ables precisely. Experiment shows MANTA infers types
with precision by 78.7% and recall by 97.2%, outper-
forming existing type inference by 32.7% on average.

o Type-Assisted Static Analysis: With the assistance of
the hybrid-sensitive type inference, MANTA can prune
63.9% more infeasible indirect-call targets than both
TYPEARMOR [76] and 7-CFI [55], and perform program
slicing on binary for bug detection with 61.1% similar-
ity as on the source code.

e Many Critical Vulnerabilities: We have applied MANTA
to several IoT firmware samples and detected security
bugs with only 22.1% false positive rate, among which
86 are confirmed and fixed by developers while 64
critical vulnerabilities assigned with CVE/PSV IDs.

2 Background and Motivation

We first introduce the limitation of existing type inference
in §2.1 and §2.2 and show the advantage of MANTA in §2.3.

2.1 Previous Limitations on Type Inference.

Over-approximated types and unknown types are two major
problems encountered by existing type inference.
Over-Approximated Types. Over-approximated types
arise from the conflicting type hints captured by the type
inference. When a variable is analyzed to be of different
types, a principled type inference [26, 45, 57] will merge
these types together into an over-approximated result on
the lattice. Common reasons for conflicting types include:

e Type-Unsafe Idioms. C and C++ are type-unsafe lan-
guages, thus the type of a variable can be explicitly or
implicitly converted to other not-compatible types.

e Union Type. Union is a language feature where a vari-
able can be declared as multiple types and then instan-
tiated to one of them at different program locations.

e Stack Recycling. After compilation, a stack slot could
correspond to different variables declared in the same
function, which could be of different types.

e Polymorphic Function. For a polymorphic function [57],
the types of the same arguments or the return value
could be different under different calling contexts.

Unknown Types A precise static analysis [29] can avoid
conflicting types to mitigate the problem of over-approximated
types. For example, a context-sensitive type inference [57]
can avoid conflicting types brought by polymorphic func-
tions, as a unique type variable is created for each function
argument at each calling context. However, such treatment
can introduce side effects for non-polymorphic functions. It
is possible that there are no type hints to infer the type of
a variable along a calling context, and the context-sensitive
analysis prevents the chance to capture type hints from other
calling contexts. Consequently, no type hints are captured
to infer type of the corresponding variable. Similarly, a flow-
sensitive type inference restricts the type propagation direc-
tion and incorporates strong updates to infer precise types
of variables at different program positions. However, some
potential type hints not aligned with the control-flow or-
der could be ignored, such as type hints from the opposite
branch, resulting in the same problem.

2.2 Motivating Example

Figure 3(a) shows a source code example and the correspond-
ing assembly code on which flow-insensitive type inference
infers over-approximated types. Inside the branch at Lines
13-16, the union type variable v is instantiated as ints4, and in-
side the opposite branch at Lines 17-20, the variable is instan-
tiated as char”. As shown in Figure 3(b), a flow-insensitive
type inference [26, 45, 57] can capture two type hints at the
two call site of printf, and infers that the variable stored in
[rsp+10h] could be of both char™ and intsy. Consequently,
as shown in Figure 3(c), the over-approximated type would
affect the effectiveness of type-assisted indirect call analy-
sis. Specifically, all the functions with the first parameter of
char* or intgy type would be deemed as valid indirect call
targets for both the two indirect call sites. However, in fact,
the feasible indirect call targets at Line 15 should only accept
intsq type argument, and the feasible indirect call targets at
Line 19 should only accept char” type argument.

To mitigate the above problem, a flow-sensitive type infer-
ence can propagate the two type hints along two branches
respectively, and infer precise argument types for the two
indirect call sites. However, Figure 4(a) instead shows an-
other example on which a flow-sensitive [4, 29, 46, 59, 61]
type inference fails to infer types of variables. The first pa-
rameter s of the function parsestr is used twice inside the
function. Inside a security check branch at Lines 2-4, the
content of s is printed out via printf, and then the function
returns. Later inside the branch at Lines 7-9, s is added by
the variable of fset and passed to the argument pchr of the
function checkstr, in which it is dereferenced. As shown in
Figure 4(b), a flow-sensitive type inference captures the type
hints at the printf (Line [6] in the assembly code) and infers
that parameter s ([rbp+var_8] in the assembly code) is a
pointer. However, this type hint cannot be propagated to the
opposite branch due to the restriction of control flow order.



1. union Data { [1] //rdi="l: %Id”

2 inté4_t i; char* s; [2]. mov rdi, 0x4020B5h

3.} 3]. /rsi=vd.i

4. enum Type { 41]. mov rsi, [rsp+10h]

5. INT, STRING 5]. call  printf

6.} 6] ..

7. struct TypedData { 71 /rdi=vd.i

8. Data d; Type t; 8]. mov rdi, [rsp+10h]

9. void (*fptr)(Data); 9]. mov  rex, [rsp+20h]
10. % 10]. call  rox

11, void foo(TypedData v) {

12, switch (v.t) { 11]. // rdi = “S: %s”

13. case INT: 12]. mov  rdi, 0x402132h
14. printf('l: %Id, v.d.i); 13]. //rsi=v.d.s

15. v.fptr(v.d.i); 14]. mov  rsi, [rsp+10h]
16. break; 16]. call pr|ntf

17. case STRING: T oo

18. printf('S: %s', v.d.s); 18]. //rdi=v.d.s

19. v.fptr(v.d.s); 19]. mov  rdi, [rsp+10h]
20. break: 20]. mov  rex, [rsp+20h]

21]. call  rex
(a) Source Code and Assembly Code

Type Propdgdtmn

[rsp+10h]
15: v.fptr(v.d.i}--+{int64_t, char*}
{|nt64 t v . {char*} 19: v.fptr(v.d.s}--{int64_t, char*}
[I’dl@S[m]] [ rd|@s[21J

(b) Flow-Insensitive Type Inference (c) Imprecise Indirect Call Analysis

Figure 3. Over-approximated types inferred by flow-
insensitive type inference, leading to false call targets.

As a result, the type of parameter s at Line 9 ([rbp+var_8]
at Line [9] in the assembly code) is remained unknown. Con-
sequently, as shown in Figure 4(c), a static analyzer cannot
distinguish which incoming value of pchr is the base pointer,
leading to a false NPD value flow path started from a zero
value to a pointer dereference site of pchr.

2.3 Our Approach

In a word, low-precision analysis can infer types potentially
missed by high-precision analysis, and high-precision anal-
ysis can mitigate the problem of over-approximated types
faced by low-precision analysis. As a result, instead of solely
relying on any one of them, we design a novel hybrid ap-
proach to exploit the benefits of both of them. Specifically,
as shown in the workflow graph in Figure 1, a global flow-
insensitive type inference is performed first. At this stage,
for the example in Figure 4(a), the type of argument s is
already precisely resolved as ptr. However, for the example
in Figure 3(a), the two merged types indicate a possibility
for further refinement. As a result, context-sensitive and
flow-sensitive type refinement with increasing precision is
gradually performed on the merged types until it is precisely
resolved at the two indirect call sites.

3 Preliminary Definitions

In this section, we give the definitions used in the paper.
Program Abstraction. Figure 5 shows the abstract do-
main used in our analysis. We utilize binary lifter [38] to

1. void parsestr(char* s, long len) { <P’=1|'SGSU>

2. if(len <=0){ . Mlrsi=s

3. printf("Invalid string %p", s); 2 . mov  rsi, [rbp+var_8]
4. return; 371 // rdi = "Invalid string %p"
5} 41]. mov rdi, 0x4020D6

6. 5]. mov al,0

7. long offset = 0; 61]. call printf

8. while(offset < len) { Tk cco

9. if (checkstr(s + offset)) 8] /rdi=s
10. return; 9]. mov rdi, [rbp+var_8]
11. offset++; 10]. // [rbp+var_18] = offset
12. } 11]. add rdi, [rbp+var_18]
13. } 12]. call checkstr

* 13]. ...

14. bgol*checlisfrs?ha: pch_r)_(” e RS
15, if (*pchr =="" || *pchr == ') { 14]. push rbp
16. *pchr = "\x00" 15]. mov  rbp, rsp
17. return true; 16]. mov [rbp+var_10], rdi
18} 17]. mov  rax, [rbp+var_10]
19.  return false; 18]. // rax = pchr
20. } 19]. movsx eax, byte ptr [rax]

""" (a) Source Code and Assembly Code

”'/ [rbp+var_8]@sg; {1}
[rbp+var_ 8]@3[61 {ptr} M {1
call
-6

Data Dependency
_—

offset@9 {1}

False NPD

pchr@15 -{+{ptr}

(b) Flow-Sensitive Type Inference (c) Incorrect Data-Dependency

Figure 4. Unknown types inferred by flow-sensitive type
inference, leading to false positive data dependency.

translate binary code to LLVM IR, in which binary registers
and arguments are translated to SSA value v € V, and vast
binary instruction set for different architectures is mapped
LLVM instructions s € S. Following existing works [47], the
global and stack memory region is partitioned into a disjoint
set of objects, and the heap object is modeled by allocation-
site abstraction. These objects are represented by o € O. To
ensure the analysis scalability, we pre-process the lifted IR to
be acyclic by unrolling each loop in the control flow graph
(CFG) and the call graph, following the existing bug-finding
tools [67, 79].

Points-to Analysis. The points-to-map P defined in Fig-
ure 5 is used to construct the DDG and perform type infer-
ence on memory objects. There are plenty of binary points-to
analyses, and we follow the state-of-the-art techniques [43,
44] based on the block memory model. The points-to analysis
is flow-, field-, and context-sensitive. For scalability consid-
eration, we adopt the bottom-up style compositional tech-
nique [78, 79] to avoid reanalyzing the same function from
different calling contexts, which has also been used in many
well-known bug-finding tools [9, 67, 79].

The points-to analysis involves a few well-identified rea-
sonable unsound choices. Specifically, in the implementation,
we follow standard choices to unroll each loop twice, break
back edges on the call graph, and collapse fields of an array
into a monolithic object when symbolic indexing is encoun-
tered. Additionally, following existing works [67, 79], func-
tion pointers are not modeled during the points-to analysis.
Furthermore, the analysis assumes parameters of a function



Variables v eV
Memory objects o0 € O

Statements s €S
Points-tomap P:=VUO — 20
Type map FT/Fl:=VUO > T

Figure 5. Basic abstract domain.

TYPe(T) = Tprim | Tarray | Tobject | Tfunc
Primary Type(Tprim) = Treg(sizey | T| L
Register Type(Tres) = Tnumgsizey | ptr(T)

Numeric Type(Tnum<size>) int(sizey | float | double

Array Type(Tarray) = T X (length)
Object Type(Top;) = {(offset); : T;}
Function Type(Tfyn.) = {arg; : Ti} —» T
(size) = {1,8,16,32, 64}

(lengthy e N (of fset) e N

Figure 6. Typing in MANTA

do not alias with each other, easing the effort to build multi-
ple partial transfer functions [78] to model different aliases
relationship from the different calling contexts. A further
discussion of the implication of these choices, as well as
other factors, on the soundness of the system, will be given
in § 6.4.

Typing Definition. Figure 6 shows the types supported
by MANTA. In general, the type system is similar to that of
LLVM, in which we infer pointer type and numeric type with
various sizes and precision. Furthermore, the type inference
is field-sensitive in inferring object fields and array types.
Following existing principled type inference [45], the typing
forms a lattice?, where a type can be a subtype or a parent
type of another type. For example, Tp,m(32) is the parent
type of float, denoted by T, (s2y >: float. Symbols T and
1 denote the upper and lower bound of the type lattice,
respectively. For each variable v and memory object o, we
maintain its upper bound and lower bound type by two type
maps F1 () and F(v).

Next, we give the definition of DDG, on which we can
perform type inference and graph-based bug detection.

Definition 1 (Data Dependency Graph). G = (N, E).

e Each of the vertex in N is denoted by v@s, indicating
that variable v is used or defined at statement s. For
example, the instruction *q = b leads to the vertex
b@=*q="0.

2The type lattice can be found in Figure 1 inside the supplementary mate-
rial [3]

Table 1. Rules for global flow-insensitive type inference.

Statement ‘ Typestates Updating

UnifyVarType(p, q), ¥ 01, 02

@COPY:  p=q € P(p) U P(q): UnifyObjType(os, 02)

® LOAD: =7q

| VoeP(q):UnifyVarType(p,o)
@ STORE: *p=q |

Vo € P(p) : UnifyVarType(o, q)

@ TYPE-REVEALING:

(i.e., p reveals as ty) UnifyvarType(p, ty)

e E C N XN is the set of directed edges to represent data
dependence relations between vertices.

Most data dependencies can be derived from an instruc-
tion itself, such as copy and phi instructions. However, edges
between memory dereference sites rely on the points-to anal-
ysis. Specifically, the dependency (p@ * a = p, q@q = *b) is
constructed if and only if Jo € P(b), p € P(0), indicating b
points to a memory location containing p while it is loaded.

4 Hybrid Sensitive Type Inference

In this section, we describe the global flow-insensitive type
inference in §4.1 and the two-stage type refinement in §4.2.

4.1 Global Flow-Insensitive Type Inference

At this stage, a global flow-insensitive type inference is
performed to infer types thoroughly. To do so, we apply a
unification-based algorithm to unify variable types together.

The type maps are updated during the unification process.
FT is updated with the join (V) operator on the type lattice to
maintain an upper-bound type, and F! is updated with the
meet (A) operator to maintain a lower-bound type. Prior the
analysis, each variable and memory field of F' is initialized
as 1, and that of F! is initialized as T. Typing rules for each
kind of instruction are shown in Table 1.

o For value copy instructions @, including bitcast, phi,
and call, UnifyVarType() is applied to unify the types
of incoming and outgoing values together to update
both the two type maps. Additionally, UnifyObjType
is applied on the pointed-to-by objects to unify types
of memory fields sharing the same offset.

e For memory load instructions @, the types of the vari-
able loaded from the memory field and the types of
the field are unified. A similar handling process is per-
formed on memory store instructions @.

e Type-revealing instructions @ provide type hints for
type inference. Examples include type-known external
functions such as malloc(), arithmetic calculations,
or pointer dereference.

Once the global flow-insensitive type inference finishes,
the result of initial type maps is obtained. According to the



type map, each variable is classified into one of the following
three categories:

o (Precise Type Variable, Vp). The set of variables v
whose type is precisely resolved as a singleton, v €
Vp : F1(0) = Fl(v), since the upper bound and lower
bound types are the same.

e (Over-Approximated Type Variable, V(). The set of
variables v whose type is over-approximately inferred,
v € Vo : F1(v) >: F(v) and FT(v) # Fl(0), since the
interval between upper bound and lower bound types
could be further narrowed down.

o (Unknown Type Variable, Vi;). The set of variables
o whose type is unknown, v € Vy : FT(v) = 1 and
Fl(0) = T, since no type hints have been captured to
update the variable’s type map during the analysis.

For v € Vp, no further refinement needs to be performed
since its type is already precisely resolved, and refinement
cannot generate a better result.

Also, no further refinement should be performed on v €
Vv, since even a flow-insensitive type inference cannot cap-
ture any type hints to infer its type. Note that for conser-
vative consideration, their upper bound F'(v) would be up-
dated to T and lower bound F!(v) would be updated to L
once the analysis finishes, indicating an any-type variable.

Only for v € Vo, higher precision analysis could further
narrow down the type interval to increase the type inference
precision. In the next section, we give more details on how
to refine the types of these variables.

4.2 Type Refinements

4.2.1 Context-Sensitive Type Refinement. For eachov €
Vo, context-sensitive and flow-sensitive analyses will be per-
formed progressively to refine the type map. To achieve this,

DDG performs on-demand analysis on these over-approximated

type variables.

To infer precise types for variables v € Vo, we perform
context-sensitive graph traversal on DDG to collect more
condensed type hints in the sense that:

o Context-sensitivity can be achieved via graph traver-
sal concerning CFL-reachability [65], mitigating over-
approximation brought by polymorphic functions.

e Only aliased variables would be searched on the DDG,
mitigating the over-approximation brought by merg-
ing types of non-aliased variables.

Algorithm 1 shows the pseudocode for the process:

o CTX_REFINEMENT() shows the main procedural of the
refinement. For each variable v € Vo, the function
first collects its root values by backward traversal on
the DDG with FIND_ROOTS(). Then all the type hints
on the derivatives of the root nodes are collected via
COLLECT_TYPES(), which will be merged together and
used to update the type map of variable v.

Algorithm 1: Context-Sensitive Type Refinement

1 Input Data Dependency Graph DDG.
2 Input Over-Approximated Type Variables V.
3 Function CTX_REFINEMENT():

4 forve Vp do
5 types — 0
6 for root € FIND_ROOTS(v) do
7 L types « types U COLLECT_TYPES (root)
8 if types # ( then
9 FT(0) « LUB(types)
10 Fl(v) < GLB(types)
11 Function FIND_ROOTS (v):
12 root_sets «— ()
13 for pin DDG.parents(v) do
14 ctx_stack.insert(context(p,v))
15 if ctx_stack.valid() then
16 L root_sets < root_set U FIND_ROOTS(p)
17 ctx_stack .pop()
18 if root_sets == () then
19 L root_sets <o
20 | return root_sets
21 Function COLLECT_TYPES(v):
22 type_sets «— type_annotations(v)
23 for ¢ in DDG.childs(v) do
24 cfl_stack.insert(context(p,v))
25 if ctx_stack.valid() then
26 lype_sets «— type_sets U
COLLECT_TYPES(p)
27 cfl_stack.pop()
28 | returnitype_sets

FIND_ROOTS() shows the procedure to find the root
nodes via backward traversal on the DDG. One key
point is that ctx_stack maintains the calling context
while traversing the DDG, and unreachable call con-
texts would be rejected to achieve context sensitivity.
Note that since recursive cycles have been removed
from the program during pre-processing, calling con-
texts can be tracked via pushing and popping from a
stack, without risk of non-termination. Additionally,
when MANTA encounters a binary instruction such as
add or sub during traversal, it would turn to resolve the
type of operands first and performs feasibility checking
(discussed in §5.2) to determine the correct searching
direction.

COLLECT_TYPES() shows the procedural to collect type
hints of a root node. At a high level, a forward DDG tra-
versal with CFL-reachability validation is performed
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on the root node, and all the type annotations on the
traversed nodes will be collected and returned.

Example 4.1. Figure 7 shows an example of context-sensitive
type refinement on v. To refine the type, a context-sensitive

backward search first detects the root node p. Next, all valid
type hints are collected through a forward CFL-reachable

traversal on p, and only the type hint for intg, is collected.
The two type annotations of ptr are not collected due to

CFL-unreachable paths, resulting in both F'(v) and F!(v)

being precisely resolved as intg4.

4.2.2 Flow-Sensitive Type Refinement. For a variable
whose type is still over-approximated, we further perform
flow-sensitive type refinement to refine its type. Given an
over-approximated type variable v € V, the flow-sensitive
refinement is performed in two ways. First, only reachable
type hints following the control-flow order are collected to
reveal variables’ types. Second, the def- and each use-site s
of variable v, denoted by v@s, would be treated as a distinct
variable to be inferred its type. In our formalism, the type of
v at location s is represented by FT (v@s) and F! (0@s), based
on an extended notation of the type map defined in Figure 5.
For variable v € Vy U Vp, at each of its use site s we have
F'/Fl(v) == F1/F (v@s), since flow-sensitive refinement
is not required to be performed.

Algorithm 2 shows the pseudocode for flow-sensitive type
refinement:

e FLOW_REFINEMENT() shows the main procedural of
the refinement. Similarly, for each v € Vo, the proce-
dural invokes FIND_ROOTS () to collect its root values,
which can be used to check the alias relationship. Next,
at def- and each use-site s of v, we collect type hints
on aliases of v reachable to s via REACHABLE_TYPES().
The collected type hints would be merged to represent
the inferred type of v@s.

e REACHABLE_TYPES() performs backward searching on
CFG to collect type annotations on aliases of v reach-
able to s. Specifically, if the currently traversed state-
ment is a type-revealing site of an alias of v, the corre-
sponding revealed type would be collected. The search-
ing stops when a type annotation is met during the
traversal such that strong update is applied.

Algorithm 2: Flow-Sensitive Type Refinement

1 Input Data Dependency Graph DDG.
2 Input Control Flow Graph CFG.
3 Input Over-Approximated Type Variables V.
4 Function FLOW_REFINEMENT():
5 forve Vp do
6 v_roots < FIND_ROOTS (v)
7 for s € get_users(v) U {v} do
8 types < REACHABLE_TYPES(s, v_roots)
9 if types # 0 then
10 FT (0@s) « LUB(types)
L Fl(v@s) «— GLB(types)

11

12 Function REACHABLE_TYPES(s, roots):
13 for v € get_oprands(s) U {s} do

14 if FIND_ROOTS(v) N roots # O then
15 if type_annotation(v@s) # 0 then
16 L return type_annotation(v@s)

17 types «— 0
18 for pin CFG.parents(s) do

19 ctx_stack.insert(context(p,s))

20 if ctx_stack.valid() then

21 types «— types U
REACHABLE_TYPES (p, roots)

22 ctx_stack .pop()

23 return fypes

The flow-sensitive refinement can effectively handle the
over-approximation introduced by type casting or type in-
stantiation of variables at different use sites, while also miti-
gating some compiler optimizations, such as stack recycling,
where multiple variables of different types can be stored in
the same stack location at different program points.

Example 4.2. Figure 8 shows the flow-sensitive type refine-
ment on the example in Figure 3. To infer the type of v.d
used as function arguments at two indirect call sites, MANTA
performs backward searching on CFG from these two sites,
respectively. For the use site at Line 15, one type annotation
of inte4 at Line 14 is collected; for the use site at Line 19, one
type annotation of intg, at Line 18 is collected. As a result,
the type of v.d can be precisely inferred as intgq and ptr(ints)
at two call sites, respectively.

5 Type-Assisted Static Analysis

In this section, we describe the type-assisted static analysis
clients in detail, including type-based indirect call analysis
in §5.1 and type-based data-dependency pruning in §5.2.
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5.1 Type-Based Indirect Call Analysis

At ahigh level, inferred types of arguments and return values
at each indirect call and address-taken function are checked
to validate the calling feasibility. Differing from existing
works [55, 76] in which only argument number and width
are recovered for compatibility checking, richer types in
MANTA can prune away more infeasible indirect call targets
effectively.

We validate the indirect call feasibility from the following
perspectives:

e The number of the arguments at the call site should
be greater than that of the function definition.

e For each actual argument arg; at indirect call site s
and parameter par; of function f, their types should
satisfy that FT(arg;@s) >: F! (par;@entryy).

o For actual return value ret at call site and formal return
value rets at function definition, their types should
satisfy that ]FT(retf@exitf) >: Fl(ret@s).

For pointer type and memory type, type comparison is
performed on each field recursively.

Example 5.1. Back to figure 8, the type of argument v.d.s
of the indirect call site at Line 19 is precisely inferred as
ptr(int_8). As a result, only functions with at most one ar-
gument whose lower bound type is at most ptr(int_8) can
be feasible indirect call targets.

5.2 Infeasible Data Dependency Pruning

The inferred types can also help us prune away infeasible
data dependency regarding pointer arithmetic calculation,
in case these data dependency relationships lead to false
positives while performing program slicing on DDG. Table 2
shows the detailed rules for the pruning.

e For add instruction, if the result is of ptr type, then
this instruction should be pointer arithmetic in which
a base pointer is added by an offset of numeric type. In
such a case, we prune away the data dependency from
the numeric operand to the result pointer since the
numeric operand is not an alias of the result pointer.

e For sub instruction, if the result is of numeric type and
the operand is of ptr type, then this instruction should
calculate the offset between two pointers. In such case,
we prune away the dependency from ptr type operand

Table 2. Rules for pruning infeasible data dependency. The
second column denotes the rule, in which TY(v) = tyis
the abbreviation of "F1 (v) = F!(v) = ty". The third column
denotes the pruned data dependency, in which v — r repre-
sents the pruned data dependency from o to r.

Opcode ‘ Rules ‘ Infeasible Dep
s: R=ADD OP1, OP2 | TY(R@s) = ptr A TY(OP1@S) = Tpum OP1 — R
s: R=ADD OP1, OP2 | TY(R@s) = ptr A TY(OP2@s) = Tpum OP2 — R
s: R=SUBOP1, OP2 | TY(R@s) = Tpum A TY(OP1@S) = ptr OP1 — R
s: R=SUBOP1, OP2 | TY(R@s) = Tpum A TY(OP2@S) = ptr OP2 — R
s: R=SUB OP1, OP2 TY(R@s) = ptr 0P2 - R

to numeric type result since the calculation result is
not the alias of the pointer operand anymore. Similarly,
if the result is of ptr type, then the dependency from
the second operand to return is pruned.

Example 5.2. Back to the example in Figure 4(c), there is a
false positive NPD value flow path starting from constant @
at Line 9 to *pchr at Line 15. If the type inference can infer
that the type of of fset at line 9 is of numeric type, then the
data dependency edge from of fset to *pchr can be pruned
away. As a result, the false positive NPD will not be detected.

5.3 Source-Sink DDG Traversal Bug Detection

Following past works [72, 75], we model the bug detection
as program slicing over DDG with path-feasibility validation.
For example, an NPD vulnerability can be detected by cap-
turing a feasible value flow path from which a NULL value
can flow to a pointer dereference site.

By describing the specification of sources and sinks, a se-
ries of vulnerabilities can be detected. Specifically, in this
paper, we set up example checkers for five representative
security bugs for evaluation purposes, including Null Pointer
Dereference (NPD), Return Stack Address (RSA), Use After
Free (UAF), OS Command Injection (CMI) and Buffer Over-
flow (BOF). (The details of these specifications are shown
in Table 4 inside the supplementary material [3]). Besides,
users of MANTA can easily implement a new bug checker
by specifying the sources and sinks of the vulnerabilities to
detect.

6 Evaluation
This section evaluates the following research questions:
e RQ1: How effective is the hybrid-sensitive type infer-
ence of MANTA compared with existing echniques?
e RQ2: How effective are the inferred types of MANTA

assisting with static analysis compared with existing
type inference techniques?

e RQ3: How effective is MANTA as a static binary bug-
finding tool compared to others?

Benchmark. The benchmarks for type inference evalu-
ation contain 14 large-scale open-source projects, and the



Table 3. Type inference precision and recall on variables in 14 large-scale open source projects and coreutils benchmarks.

Project | KLoC | #Vars | Dirty[17] | Ghidra[5] | RetDec[38] | Retypd [57] FI [ s MA\NTAFI vFS [FI+Cs+FS
%Prec  %Recl | %Prec %Recl | %Prec %Recl | %Prec %Recl || %Prec %Recl ‘ %Prec  %Recl ‘ %Prec  %Recl ‘ %Prec  %Recl

vsftpd 16 765 68.0 89.2 33.9 59.7 36.5 36.5 254 89.1 133 97.9 26.8 98.6 38.6 96.6 77.1 94.2
libuv 36 1,212 71.2 97.6 31.6 51.1 39.6 39.6 29.4 86.3 41.9 98.9 21.6 99.7 56.1 98.9 85.0 98.9
memcached 48 1,033 28.3 90.6 19.1 34.8 49.4 49.4 3.2 98.6 37.1 96.2 32.0 98.8 58.8 95.9 83.2 95.5
lighttpd 89 2,454 60.1 88.8 36.1 54.3 39.6 39.6 N 17.9 99.5 36.6 99.0 49.4 98.5 93.2 98.0
tmux 110 3,607 63.1 87.6 33.9 59.0 36.3 36.3 25.1 99.4 27.7 98.7 46.7 98.1 82.6 96.6
coreutils 115 35,036 69.8 85.5 31.8 73.4 55.5 55.5 25.9 88.4 60.4 98.7 18.9 99.0 70.2 98.0 84.0 97.7
openssh 119 3,928 61.8 88.3 36.9 68.7 40.7 40.7 31.6 88.3 23.1 99.3 27.2 99.7 44.0 99.0 85.8 98.3
wolfSSL 122 4,634 61.6 87.4 22.6 66.8 40.9 40.9 18.4 88.9 18.7 98.4 30.7 98.0 45.3 96.7 77.7 95.4
redis 179 6,947 55.6 82.1 32.2 56.6 32.9 329 28.2 97.5 234 98.7 48.0 96.6 78.6 95.7
libicu 317 12,251 52.0 91.5 41.0 68.6 40.6 40.6 27.3 99.3 25.5 99.3 48.3 98.7 86.1 98.3
vim 416 13,891 34.2 54.4 47.1 47.1 N 25.1 99.4 43.6 98.9 60.8 98.4 85.5 97.8
python 560 11,178 45.7 67.6 24.7 24.7 17.5 99.7 15.9 99.4 323 99.1 71.1 98.1
wrk 594 14,225 78.5 90.8 67.2 78.5 27.2 27.2 25.1 98.9 13.0 99.4 36.7 98.4 74.8 96.3
fimpeg 1,213 68,576 72.4 85.1 22.8 60.3 41.8 41.8 45.2 97.7 16.4 99.4 56.5 97.3 72.9 96.7
php 1,358 20,007 43.7 87.4 30.9 59.7 31.2 31.2 28.9 98.6 22.8 98.9 47.1 97.8 77.2 97.2

‘ Total. ‘ 5,177 ‘ 223,256 ‘ 63.7% 86.9% | 32.2% 64.0% | 41.0% 41.0% | 25.2% 88.6% || 35.9% 98.5% | 22.3% 99.2% | 53.1% 97.9% | 78.7% 97.2%

A denotes the type inference cannot finish analysis in 72 hours.
% denotes the type inference crashes.

coreutils benchmarks include 104 separate binaries. These
projects range from tens of thousands to millions of lines
of code, covering a broad spectrum of applications such
as servers, databases, and widely used third-party libraries.
We compiled these projects into binaries using the building
systems’ default optimization settings, including -02, -O3,
-Ofast, to conform to the real-world scenario. To demonstrate
MANTA’s effectiveness in real-world binary bug detection,
we also selected 9 IoT firmware samples from famous ven-
dors and performed bug detection on them. All experiments
were conducted on a server with two 20-core Intel(R) Xeon
CPU@2.20GHz CPU and 256GB physical memory running
Ubuntu-20.04.

6.1 Comparison with Existing Type Inference

Metrics. We evaluate the ability to infer first-layer types of
function parameters and measure the quality by precision
(P) and recall (R). We measure precision by the proportion
of variables whose type is correctly inferred and measure
recall by the proportion of variables whose type is captured
by the type inference. For example, suppose a type inference
concludes that a type is unknown (considered as any types
in the analysis) or produces a range including the actual
type; the case will be counted toward the recall contribution
since the inferred type results include the actual type. To
obtain ground truth variable types for evaluation, we parse
the DWARF debugging information to get the defined types
of variables in the source code. As addressed in ReTypd’s [57]
evaluation, in a few cases, source types could be less precise
than what a type inference tool can infer due to type-unsafe
usages. For instance, a variable may be defined as uint64 t
but actually used as a pointer. Following the existing evalua-
tion convention, we did not specifically address these cases
and evaluated all the tools with the same metrics to ensure
fairness in the evaluation.

We compare MANTA with four existing type inference
tools: DirTY [17], GHIDRA [5], RETDEC [38] and RETYPD [57].
Furthermore, we set four comparison groups for MANTA.
MaNTA-FI only performs the imprecise flow-insensitive type
inference, MANTA-FS only performs flow-sensitive analysis,
MANTA-FI+FS combines them together in a staging approach,
and MANTA-FI+CS+FS performs the full-stage analysis.

Table 3 shows the type inference precision and re-
call on benchmarks. Among all the comparison groups,
MANTA-FI+CS+FS achieves the best result where the pre-
cision is 78.7% and recall is 97.2%, outperforming DIRTY,
GHIDRA, RETDEC and RETYPD, whose precision and recall is
63.7%/86.9%, 32.2%/64.0%, 41.0%/41.0% and 25.2%/88.6%
respectively.

Analysis of Other Tools. DIRTY is the state-of-the-art
data-driven type inference technique that achieves a good
result. It is powerful and can predict variable and structure
names, even though our downstream static analysis applica-
tion does not request such information. However, since these
data-driven approaches guess types, they cannot have high
recall as MANTA and cannot achieve high precision as the
prediction could be incorrect. GHIDRA is a famous decom-
piler equipped with type inference. It performs a heuristic
rule-based analysis by modeling some access patterns and
only performs regional type propagation. Thus, it cannot
achieve a satisfactory inference result. During the manual
inspection, we also noticed that many variables are inferred
as undefined when there are no hints collected to infer the
type. RETDEC is a binary lifter equipped with a type infer-
ence technique similar to GHIDRA, but the difference is that
it does not produce unknown type since its output should
be a valid LLVM IR in which all values should have type.
As a result, it will mark the value whose type cannot be
inferred as i32; such treatment introduces low recall as lots
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Figure 9. The proportion of inferred types result generated
by a combination of different analysis sensitivity.

of pointer type variables are inferred as integer type. RE-
TYPD is a principled type inference based on a subtyping
system and is implemented as an open-source plugin on top
of GHIDRA. However, its core is a constraint-solving engine
performing transitive closure analysis with O(N?) time com-
plexity, which is inefficient when analyzing large binaries.
Our experiment shows it can only finish analysis on a few
large-scale projects in 72 hours.

Ablation Analysis. The standalone MANTA-FI and
MANTA-FS cannot achieve high precision. We investigate
the deep reason behind this by analyzing the distribution
of inferred types. As shown in Figure 9, 50.5% of types
are over-approximately analyzed by MANTA-FI, while 76.2%
unknown types cannot be inferred by MANTA-FS. By combin-
ing both, MANTA-FI+FS can infer types for a large portion of
unknown types variable and refine many over-approximated
types, contributing to higher precision. However, some over-
approximated types will be directly refined as unknown
in the flow-sensitive refinement stage. To mitigate the
problem, MANTA-FI+CS+FS utilizes a flow-insensitive but
context-sensitive intermediate stage to resolve these over-
approximated types in case they are directly inferred as
unknown due to ignoring all the potential type hints. As
a result, MANTA-FI+CS+FS achieves the highest precision.
The result also reveals a slight side effect; the higher pre-
cision comes with a few incorrect inferred types, leading
to lower recall. The core reason behind the phenomenon
is that some typing rules are not always correct due to the
type-unsafe usage in the C/C++ language. For example, a
typical case is that some pointer-type variables could be
compared with a special integer indicating an error value
(e.g., -1). Since the typing rules inside MANTA decide that
two compared variables should have the same types, it will
incorrectly infer the pointer as an integer in such a case.

Scalability. MANTA can scale to large binaries with accept-
able time and memory resources. For example, even on large
projects like FFmpeg with a million lines of code, MANTA can
finish the type inference in 38 minutes with 64G memory.
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Figure 10. Type inference performance based on runtime
data. The x-axis stands for the number of lines in a project
(KLoC) and the y-axis stands for the time and memory cost.

Figure 10 further gives the fitting curves over the data col-
lected from evaluation, showing that the performance almost
increases linearly as the project size increases.

6.2 Downstream Evaluation on Static Analysis

In this section, we evaluate the effectiveness of the inferred
types in assisting with two downstream static analysis tasks.
The first task is to utilize the inferred type to resolve indirect
call targets, and the second task is to refine the DDG and
better help with program slicing for bug detection.

6.2.1 Type-Assisted Indirect Call Analysis. We evalu-
ated type-based indirect call analysis on the 14 open-source
projects used in previous experiments. Furthermore, except
for the above type inference tools, we further compared
with two existing type-based binary indirect call analysis
TyYPEARMOR [76] and 7-CFI [55]. TypeArmor uses the num-
ber of arguments to prune away infeasible targets, and 7-CFI
further utilizes the width of arguments. Since the type infor-
mation has already been included in MANTA, we compared
it with them based on our implementation.

Metrics. To obtain the ground truth data, we utilized the
type in the source code to perform the type-based indirect
call analysis [8]. The indirect call targets pruned away by
the source-level analysis are considered infeasible, and the
remaining are considered feasible. To match the results be-
tween source- and binary-level analysis, we kept .debug_line
sections in binary to map each indirect call instruction to
its source file position and to obtain the names of address-
taken functions. Precision and recall can be calculated with
a standard formula, where higher precision indicates more
pruning on infeasible targets, and higher recall means less
incorrect pruning on feasible targets. Note that even though
some feasible targets generated by source-level type-based
indirect call analysis contain false positives, a binary-level
type-based approach still should not refine more targets than
the source-level counterparts. Besides, following existing
works, we analyzed the Average Indirect Call Target (AICT)
to measure the effectiveness of the pruning.



Table 4. Type-based indirect call analysis Average Indirect Call Targets (#AICT) and precision (P) assisted by type inference.

Source Dirty Ghidra RetDec Retypd TypeArmor 7-CFI MANTA
Project # AT [17] [5] [38] [57] [76] [55] FI FS FI + FS | FI + CS + FS
#AICT | #AICT (P) | #AICT (P) | #AICT (P) | #AICT (P) | #AICT (P) | #AICT (P) || #AICT (P) | #AICT (P) | #AICT(P) | #AICT (P)

1. vsftpd 29 4 234 (21.4%) | 24.0 (18.6%) | 19.0 (33.4%) | 245 (16.8%) | 26.4(10.3%) |  25.9(12.3%) 25.6(13.2%) | 25.9(12.3%) | 25.0(15.7%) 22.8(24.5%)
2. libuv 87 11 585 (36.3%) | 35.6(59.0%) | 50.4 (45.9%) | 52.0 (43.1%) 745(9.2%) | 73.4(10.8%) 70.1(15.6%) | 70.1(15.6%) |  65.2(22.6%) 63.7(24.7%)
3. memcached | 64 7 502 (24.0%) | 27.0 (425%) | 11.7 (46.2%) | 64.0 (0.0%) 60.3( 6.5%) 60.0( 7.0%) 46.3(30.9%) 60.0(7.0%) | 44.3(34.5%) 43.0(36.8%)
4. lighttpd 103 18 72.8 (32.5%) | 43.6 (52.6%) |  45.9 (57.3%) N 80.5(24.7%) 78.3(27.3%) 77.6(28.1%) 78.2(27.3%) 76.5(29.4%) 73.3(33.2%)
5. tmux 610 18 348.7 (30.8%) | 255.6 (37.1%) | 301.5 (37.1%) 497.7(18.8%) | 480.2(21.7%) || 479.5(21.8%) | 480.0(21.7%) | 473.7(22.8%) |  459.6(25.2%)
6. openssh 177 31 141.0 (20.9%) 81.7 (45.2%) 36.5 (56.0%) | 112.3 (38.0%) 127.1(31.3%) 122.8(34.4%) 120.1(36.3%) 122.5(34.6%) 115.5(39.5%) 79.5(65.2%)
7. wolfssl 13 3 7.0 (38.5%) 8.8 (28.5%) 58(355%) | 6.4 (36.3%) |  10.2(28.2%) 9.6(34.3%) 9.5(35.4%) 9.6(34.3%) 9.2(38.2%) 8.9(40.7%)
8. redis 1058 43 657.4 (33.4%) | 540.0 (31.8%) | 557.9 (38.3%) 856.3(19.3%) | 845.9(20.2%) || 825.6(22.2%) | 844.4(20.4%) | 806.6(24.0%) |  766.4(28.0%)
9. libicu 1281 53 | 1152.0 (10.3%) | 1239.1(3.3%) | 517.5 (55.6%) 992.7(23.4%) | 938.4(27.8%) || 909.3(30.2%) | 931.8(28.3%) | 875.9(32.9%) |  807.7(38.4%)
10. vim 1251 32 + 307.0 (36.6%) | 361.6 (36.0%) N 798.8(36.9%) 767.8(39.4%) 745.5(41.2%) 763.5(39.7%) 704.9(44.6%) 600.5(53.2%)
11. python 3128 | 336 989.8 (40.8%) | 886.0 (37.9%) 2553.0(20.2%) | 2549.6(20.3%) || 2541.7(20.6%) | 2537.9(20.7%) | 2514.0(21.5%) | 2398.2(25.5%)
12. wrk 2069 94 | 1126.9 (44.7%) | 733.7 (52.7%) | 723.4 (49.2%) 1600.7(23.5%) | 1566.3(25.2%) || 1547.9(26.1%) | 1549.6(26.0%) | 1471.2(30.0%) | 1336.7(36.8%)
13. ffmpeg 9059 393 8346.6 (8.1%) | 5021.8 (33.4%) | 3174.8 (47.0%) 7357.8(19.5%) | 7122.0(21.9%) || 5899.8(35.9%) | 7108.4(22.1%) | 5512.5(40.3%) 5044.1(45.5%)
14. php 4331 | 136 | 3313.9(20.7%) | 2171.4 (30.8%) | 2382.1 (39.2%) 3558.2(17.2%) | 3522.9(18.0%) || 3473.4(19.2%) | 3520.0(18.1%) | 3431.7(20.2%) | 3299.2(23.3%)
Geomean. 439.6 | 31.9 | 242.1(24.1%) | 208.8 (31.6%) | 169.8 (43.2%) | 35.8 (31.6%) | 351.9 (18.8%) | 342.6 (20.8%) || 326.8 (25.8%) | 340.6 (21.6%) | 315.5 (28.5%) | 289.8 (34.1%)
A denotes the type inference cannot finish analysis in 72 hours.
% denotes the type inference crashes.
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Figure 11. Recall of type-based indirect call analysis.

Precision. Table 4 shows the indirect call analysis result.
In summary, MANTA-FI+CS+FS can prune away much more
infeasible indirect call targets than TyPEARMOR and 7-CFI
(34.1% vs 18.8%/20.8%), indicating its effectiveness. Com-
pared with other type inference tools, MANTA still shows an
advantage, benefiting from the high precision of MANTA’s
inferred types. Despite RETDEC can help with pruning more
indirect call targets, we indicate that such precision comes
with very low recall, which will be shown below.

Recall. Figure 11 shows the geometric mean of indirect
call analysis recall assisted with different type inference.
All the ablation groups of MANTA, TYPEARMOR, and 7-CFI
exhibit very high recall (99.3%-99.6%), while other type in-
ference tools are relatively low in recall (68.2%-87.8%). As
shown by the evaluation, the recall of the type-based indirect
call analysis is directly affected by the recall of the type in-
ference, as a type inference tool with more incorrect inferred
types would lead to more incorrect pruning of indirect call
targets. For example, when assisted with RETDEC with 41.0%
recall in type inference, the recall of indirect call analysis is
only 68.2%, meaning that a substantial amount of feasible
indirect call targets are incorrectly pruned away.

6.2.2 Infeasible Data Dependency Pruning. To eval-
uate how the refined DDG can benefit bug detection, we
perform program slicing on five security vulnerability types
on the refined DDG with different type inference approaches.
We measure the similarity between the slicing results gener-
ated by Pinpoint on source code.
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MANTA
Figure 12. F1 score of source-sink pair program slicing.

Metrics. We regard each sliced source-sink pair as a unit
and take the result from Pinpoint on source code as ground
truth. Then, the F1 score is calculated to measure the simi-
larity between the source-sink pair detected on binary and
detected by Pinpoint on source code. Similar to the evalua-
tion of indirect call analysis, debug_line section in binary is
kept to perform matching between compiled and lifted IR
for evaluation purposes.

Result. Figure 12 shows the comparison result on F1 score
between different tools®. MaNTa achieves the highest f1 score
by 61.2%. Since the precision of inferred type is lower for
other ablation groups, the sliced source-sink pairs contain
more false positives as more infeasible data dependency can-
not be pruned away. Other type inference has lower f1 scores,
ranging from 2.4% to 23.8%. The lower {1 score is due to the
lower recall of the type inference, resulting in some real
source-sink pairs being incorrectly pruned away. For exam-
ple, RETDEC infers many pointer-type variables into integer
type, leading to incorrect data-dependency pruning.

6.3 Effectiveness of Real-World Bug Detection

To evaluate MANTA’s ability to detect bugs in real-world
binaries, we compared it with three existing binary bug-
finding tools, CWE_CHECKER [1], ARBITER [75] and SATC [15],
and manually checked the bug reports generated on nine IoT
firmware samples. If one bug report contains more than 100

3The detailed evaluation data is shown in Table 2 inside the supplementary
material [3]



Table 5. Comparison among bug-finding tools in false positives (#FP), reports (#R), and time in seconds (Time).

Model Arbiter cwe_checker SaTC MANTA MANTA-NOTYPE

#FP  #R  Time | #FP #R Time | #FP  #R Time | #FP #R Time | #fFP #R Time

Netgear SXR80 NA NA NA | 64 68 560 |100%" 146 81 | 14 43 1160 | 34 64 1758
Zyxel NR7101 0 0 0 | 20 30 12 | 0 0 20 | 5 19 19 | 12 2 177
Tenda A15 NA NA NA | NA NA NA | 92%" 152 167 | 6 21 87 | 13 29 1158
TRENDNet TEW-755AP NA NA NA |64%' 332 278 | 88%' 143 767 |10%' 136 123 |26% 170 211
ASUS RT-AX56U NA NA NA | 14 17 190 | 19 19 337 | 4 19 175 | 15 30 277
TOTOLink LR350 0 0 0 4 10 98 | 97%' 441 132 | 2 15 63 | 4 17 66
TOTOLink NR1800X 0 0 0 3 08 112 | 97% 346 148 | 4 28 67 | 32 56 81
TP-Link WR940N  NA NA NA | NA NA NA |100%' 661 644 | 38 99 1760 | 73%' 236 2825
H3C MagicR200 NA NA NA | NA NA NA |100%" 146 158 | 3 8 1053 | 17 22 1504
FPR NA - | 723% - 97.4% - | 231% - | 528% -

+ means we compute the FPR based on 100 randomly-selected reports; NA means the analyzer crashes on the firmware sample.

bugs, we randomly choose 100 to review to ease the manual
effort. Furthermore, to validate the effectiveness of the type-
assisted static analysis, we add an ablation group MANTA-
NoTyPE where type compatibility checking is disabled.

Precision. As shown in Table 5, the FPR of CWE_CHECKER,
SATC, MANTA, and MANTA-NOTYPE is 72.3%, 97.4%, 23.1%,
and 52.8%, respectively. In our experiments, ARBITER could
not produce any bugs in these benchmarks. Upon profiling
it, we found that its under-constrained symbolic execution
stage pruned away all the bugs, including some true positives
detected by MANTA. In conclusion, the comparison indicates
that MANTA is the most effective in terms of precision and
utility. Compared with MANTA-NOTYPE, type constraints can
significantly reduce false reports by 73.9%, demonstrating
the necessity and effectiveness of our type inference.

Comparison with Other Tools. While manually study-
ing the bug reports of other tools, we have the following
observations. First, these tools do not utilize type informa-
tion, so they have higher FPR or limitations in finding certain
bugs. For example, some false positives reported by SATC are
due to a tainted string being converted into an integer before
reaching system function. Thus, attackers cannot directly
control the command of system. Another example is that
CWE_CHECKER’s Missing Null Check detector cannot detect
the case where a null pointer originates from a constant zero
value in the binary since it cannot decide whether the zero
is an integer or a null pointer.

Comparison with MANTA-NOTYPE. The type-assisted
analysis results in more precise indirect call analysis and
DDG, thus helping MANTA detect fewer false positives than
MANTA-NOTYPE (23.1% vs 52.8%). We also checked whether
the pruning would result in false negatives. Three of the
216 true bugs detected by MANTA-NOTYPE were incorrectly
pruned away due to incorrect inferred types. Given that de-
velopers typically cannot bear excessive false positives in
practice [12], such a small sacrifice is worthwhile for build-
ing better static bug detection tools on binaries. Finally, we
made an interesting observation while inspecting the time
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consumption of MANTA-NoOTYPE and MANTA. Despite the ad-
ditional time costs of type inference, the overall analysis time
is reduced. The phenomenon is because inferred types help
stop program slicing on incorrect program paths, avoiding
unnecessary resource consumption.

Vendor-Confirmed Bugs and Assigned CVEs. Based
on our early experiences, directly reporting bugs without a
proof of concept (PoC) often results in them being overlooked
by developers. This is because the firmware is provided as
commercial off-the-shelf binaries without the corresponding
source code, making communication with developers about
the bugs difficult. To facilitate communication, one of the
authors spent a month reverse-engineering the firmware
binaries and successfully developing PoCs to trigger a sig-
nificant proportion of these bugs. However, a few bugs are
deeply entwined within complex code logic, presenting chal-
lenges for manual reproduction. Therefore, we chose not
to pursue further analysis of these bugs’ exploitability. At
the time of writing, 86 bugs were confirmed with 64 CVE
or PSV IDs assigned due to their high-security impacts *.
The confirmation of bugs spans a broad spectrum of issues,
and more excitingly, we have received official acknowledg-
ment and bug bounty rewards from vendors such as ASUS,
Zyxel, TRENDNet, and Netgear. This result demonstrates
the practicability of MANTA.

6.4 Discussion

Soundness. Despite achieving a high recall rate of 97.2% in
the evaluation, MANTA’s type inference still has limitations
in inferring all variable types, which is also a common issue
suffered by existing binary type inference methods [26, 45,
57]. The little loss in recall can be attributed to two main
factors.

First, the modeled typing rules cannot always reflect the
correct types of variables due to type-unsafe usage and com-
piler optimization. For example, it is a common programming

“The confirmed bugs list is shown in Table 3 in the supplementary mate-
rial [3]



idiom to typecast pointer-type variables and compare them
with specified constant integers to check for error conditions.
Similarly, compiler optimization may introduce bit-level op-
erations on pointer-type variables to ensure proper address
alignment. These special cases would introduce noise and
lead to incorrect type inference results. Second, type hints
may not always exist to reveal the types of variables since
many variable usages are not type-revealing. For example,
passing a variable to unmodeled external functions cannot
provide useful hints to infer the variable’s type. Many vari-
able usages only provide indirect type hints, such as the cmp
instruction, from which we can only infer that two com-
pared variables are of the same type. Additionally, following
the existing work [26] to achieve both high precision and
scalability, MANTA’s underlying points-to analysis could be
unsound due to several treatments specified in § 3, poten-
tially leading to some type hints not being captured. Due to
the aforementioned reasons, it is possible that correct type
hints cannot be captured while incorrect ones are collected,
leading to some variables being inferred as incorrect types.

Application Scope. While we have only shown that
MANTA’s type inference is effective for bug detection, the
type analysis could also support other applications. Gener-
ally, the inferred type results could benefit many applications
that do not strongly rely on soundness. For example, MANTA
could assist with binary reverse engineering by increasing
decompilation quality or further improve type-based binary
fuzzing [39] by providing more precise types to guide seed
mutation. However, since the inferred type results cannot
guarantee absolute soundness, the system is unsuitable for
applications requiring strong soundness guarantees, such as
control-flow integrity (CFI) or rigorous program verification.

Generalizability. MANTA’s hybrid-sensitive binary type
inference approach could be expanded to dynamically typed
languages like Python and JavaScript, which also encounter
a similar precision-recall trade-off problem. For example,
existing type inference methods for dynamically typed lan-
guages [6, 61] have observed that many variable types can-
not be inferred when there are few static constraints avail-
able. To address the problem, they resort to DL-based meth-
ods [6, 35, 61] to infer types for more variables. We believe
MANTA’s hybrid-sensitivity static type inference approach
can offer new insights to tackle this problem.

Type Refinement Order. The order of type refinement
could affect type inference results. In our early experiments,
we observed that flow-sensitive analysis tends to be more ag-
gressive and leads to more type loss. Therefore, we designed
our workflow with flow-sensitive refinement placed at the
final stage. For instance, if we have an over-approximated
type introduced by polymorphic functions, context-sensitive
refinement can precisely infer its type, while flow-sensitive
refinement may result in the total loss of its type if all the type
hints happen to be unreachable on CFG. Similar to the prac-
tice of applying hybrid-sensitivity in alias analysis, where
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heavy-weight analysis is placed in a later stage [31, 41], we
chose to place the more aggressive analysis later in MANTA
to achieve a better balance between higher precision in type
inference and inferring types for more variables.

7 Related Work

Type Inference. Binary type recovery can be reached by
static analysis [5, 26, 36, 45, 57], dynamic analysis [49, 69],
and machine learning [16, 17, 34, 60, 84]. MANTA is the
first tool to leverage rich program structures to refine vari-
able types progressively. As a result, MANTA can over-
come the previous limitations of standalone imprecise flow-
insensitive type inference [26, 45, 57]. Compared to dynamic
tools [49, 50, 69], which recover types from concrete exe-
cution traces, MANTA offers several advantages as a static
approach, such as independence from concrete inputs and
environmental configurations. While some recent works use
data-driven approach [16, 17, 34, 60, 84] for type inference,
they may suffer from overfitting and predict many incor-
rect results in unseen binaries. Some works have targeted
specific programming languages such as Python [30, 33, 61],
JavaScript [7, 40], and JVM [46, 59]. MANTA has a flavor of
some of the past efforts [4, 59, 61] based on flow-typing, in
which control flows or even calling contexts are respected.
Also, MANTA takes a refinement-based approach to refine
variable types.

Hybrid Program Analysis. In the field of program anal-
ysis, it is a common strategy to organize different analyses
in stages, where an imprecise pre-analysis is performed to
assist with subsequent precise analyses and improve pre-
cision efficiently. Especially for static points-to analysis,
the high-level idea of staged analysis has been explored
in several forms, including bootstrapping [13, 41], sparse
analysis [32, 73], client-driven analysis [31, 70, 71] and prun-
ing [28, 48]. Other works on hybrid or selective context-
sensitive analysis [42, 51, 58, 74] also share a similar idea. The
idea of hybrid analysis has also been applied in dynamic anal-
ysis, in which relatively cheap static analysis is performed
to reduce the dynamic exploration space in fuzzing [37],
testing [21, 24] or instrumentation [14, 56]. However, unlike
these approaches, MANTA uses hybrid analysis not for per-
formance but for precision and recall considerations. By ag-
gressively collecting enough type hints through pre-analysis
and progressively refining the types, MANTA aims to infer
types for more variables while maintaining high precision.

Static Binary Bug Detection. Many static analysis tools
are specialized for IoT embedded firmwares [15, 18, 19, 63,
64, 81] or are designed to detect specific types of vulnerabil-
ities [77, 83], leaving only a few tools for general-purpose
bug detection [1, 2, 10, 75]. Moreover, none of these tools
attempt to infer the types of variables to increase analysis
precision, as MANTA does. Some works utilize symbolic exe-
cution [20, 22, 68, 82] for bug detection, where Inception [22]



is the most similar to MANTA as it propagates type informa-
tion from code with debug information to low-level code.
However, we do not assume the existence of debug informa-
tion, setting it apart. Finally, some works detect recurring
bugs using binary similarity techniques [23, 27, 80]. In con-
trast, MANTA is designed to detect zero-day vulnerabilities
in binaries and thus does not assume any known bugs.

8 Conclusion

We have described MANTA, our hybrid-sensitive type infer-
ence for type-assisted binary bug finding. We have shown
that MANTA is precise with high recall, effectively assisting
with static bug detection in binary. More excitingly, MANTA
has found 86 vendor-confirmed bugs with 64 CVE/PSV IDs
assigned.
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A Artifact Appendix

A.1 Abstract

This section describes the details of the artifact evaluation.
The artifact includes a binary analysis tool in the form of
binary to perform type inference and bug detection, the
testing benchmarks, and the scripts to reproduce the results.

A.2 Artifact check-list (meta-information)

e Program: Python; ShellScript; C; C++

Binary: MANTA; RetDec; Z3

Data set: Coreutils; 14 Open-Source Projects
e Run-time environment: Ubuntu 20.04

Hardware: x86_64 platform

Metrics: Precision and Recall of type inference and down-
stream static analysis tasks.

e Output: Number similar to Table 3, Table 4, Figure 9, Figure
11, Figure 12, and Table 2 in supplementary materials.

Experiments: Executing prepared several shell scripts and

inspecting the output results.

e How much disk space is required (approximately)?:
100 G.

e How much time is needed to prepare workflow (ap-
proximately)?: 1 hour.

e How much time is needed to complete experiments

(approximately)?: 24 hours.

Publicly available?: No, the tool is used for commercial

purpose”.

>More details can be found on https://www.clearblueinnovations.org
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A.3 Description

A.3.1 Hardware dependencies. Our experiments were
performed on a server with two 20-core Intel(R) Xeon
@2.20GHz CPUs and 256 GB DRAM. The evaluators’ en-
vironment should be comparable to or exceed these specifi-
cations to ensure a consistent evaluation.

A.3.2 Data sets. The data sets include coreutils and 14
other open-source projects, all of which are publicly accessi-
ble.

A.4 Experiment workflow

There are seven shell scripts inside the main folder to
reproduce three major experiments described in the paper.
More details can be found in the README . md file.

(E0): [Pre-Process]

Move to the artifact main folder and execute the pre-
processing script:

$ ./1_decompile_binary.sh
This script will decompile all the binaries into LLVM IRs to
be analyzed.

(E1): [Type Inference] [60 minutes]

Description: The experiment involves running MANTA on
test cases to infer the first-layer type of all the function ar-
guments, corresponding to § 6.1 in the paper. The inferred
type results of other type inference tools have already been
included in the artifacts. All of the type inference results
would be compared with the type on source code to deter-
mine precision and recall.
Workflow:
e Execute the script:

$ ./2_run_type_inference.sh

After roughly 60 minutes, the type inference result of

ManTA would be output to corresponding folders.

o Next, execute the script:
$ ./3_show_type_inference_result.sh
If the previous step succeeds, all the data in Table 3
and Figure 9 will be printed out.

(E2): [Indirect Call Targets Pruning] [60 minutes]

Description: The experiment involves utilizing the type
inference results produced by different tools to prune away
indirect call targets, corresponding to §6.2.1 in the paper. The
analysis result would be compared against that generated
on LLVM IR of test cases compiled from source code to
determine the precision and recall.

Workflow:

e Execute the script:
$ ./4_run_indirect_call_pruning.sh


https://www.clearblueinnovations.org

After roughly 60 minutes, the script would output the
result into corresponding folders.

e Execute the script:
$ ./5_show_indirect_call_result.sh
If the previous step succeeds, all the data correspond-
ing to Table 4 and Figure 11 will be printed out.

(E3): [Data Dependency Pruning] [16 hours]

Description: The experiment involves utilizing the type
inference results produced by different tools to prune away
infeasible data dependency and assist with program slicing
for bug detection, corresponding to §6.2.2 in the paper. The
analysis result would be compared against that generated
on LLVM IR of test cases compiled from source code to
determine the FP, FN, precision, and recall.

e Execute the script:

$ ./6_run_bug_detection.sh

The execution time is estimated to be 16 hours, during
which the bug reports on each benchmark assisted
with different type inference tools would be generated
into corresponding folders. During the period, it is
expected that there will be high memory and CPU
usage.

e Execute the script:
$ ./7_show_bug_detection_result.sh
If the previous step succeeds, the script will print out
all the data corresponding to Figure 12 inside the paper
and Table 2 inside the supplementary material [3].

A.5 Evaluation and expected results

The steps to produce the evaluation results have been dis-
cussed in the previous section. Slight variability is to be
expected due to different experiment environments, and we
recommend running all the experiments in the same envi-
ronment.

A.6 Experiment customization

Users can edit the script and change the execution path to
execute MANTA on other binaries.

A.7 Notes

If the printed-out result misses certain benchmarks, it is
expected that a crash occurred during the analysis stage due
to OOM, leading to some empty reports. In such cases, users
need to delete the corresponding empty file manually and
re-execute the corresponding analysis scripts.
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