
Manta: Hybrid-Sensitive Type Inference Toward

Type-Assisted Bug Detection for Stripped Binaries

Chengfeng Ye
cyeaa@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Yuandao Cai∗
ycaibb@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Anshunkang Zhou
azhouad@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Heqing Huang
heqhuang@cityu.edu.hk

City University of Hong Kong
China

Hao Ling
hlingab@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Charles Zhang
charlesz@cse.ust.hk

The Hong Kong University of Science
and Technology

China

Abstract

Static binary bug detection has been a prominent approach
for ensuring the security of binaries used in our daily lives.
However, the type information lost in binaries prevents the
improvement opportunity for a static analyzer to utilize type
information to prune away infeasible facts and increase anal-
ysis precision. To make binary bug detection more practical
with higher precision, in this work, we propose the first
hybrid-sensitive type inference, Manta, that combines data-
flow analysis with different sensitivities to complement each
other and infer precise types for many variables. The inferred
types are then used to assist with bug detection by pruning
infeasible indirect call targets and data dependencies. Our
experiments indicate Manta outperforms prior work by in-
ferring types with 78.7% precision and 97.2% recall. Based
on the inferred types, we can prune away 63.9% more infea-
sible indirect-call targets compared to existing type analysis
techniques and perform program slicing on binaries with
61.1% similarity to that on source code. Moreover, Manta
has led to 86 new developer-confirmed vulnerabilities in
many popular IoT firmware, with 64 CVE/PSV IDs assigned.

ACM Reference Format:

Chengfeng Ye, Yuandao Cai, Anshunkang Zhou, Heqing Huang,
Hao Ling, and Charles Zhang. 2024. Manta: Hybrid-Sensitive Type

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0391-1/24/04
https://doi.org/10.1145/3622781.3674177

Inference Toward Type-Assisted Bug Detection for Stripped Bina-
ries. In 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 4 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3622781.3674177

1 Introduction

Static binary analysis is one of the most powerful techniques
for security analysis, which has been widely used in binary-
only scenarios, such as detecting vulnerabilities in embedded
firmware [15, 64, 81], and industrial control systems [62]. De-
spite its usefulness, existing binary-level static bug detection
tools still suffer from the problem of low precision. Exist-
ing studies [52, 54] have revealed that the main reason for
this precision gap is the loss of type information in binaries.
Type information has been widely utilized to filter infea-
sible targets in both indirect call analysis [8, 53] and data
dependency analysis [11, 25, 54, 66]. However, the types lost
during compilation prevent the opportunities to utilize type
information to build a better bug-detection tool for binaries.
To make type-assisted binary static analysis possible, in this
paper, we explore applying type inference to recover variable
types in stripped binaries with high precision and recall to
assist with static bug detection in binaries.
Problem. Despite binary type inference being a funda-

mental topic with long-term development, existing tech-
niques still have the following limitations. That is, they either
(i) produce an over-approximated type inference result or (ii)
infer unknown types for many variables. As a result, the in-
ferred types cannot effectively be utilized to assist with static
binary analysis.
Specifically, on the one hand, a low-precision type infer-

ence, such as flow-insensitive or context-insensitive anal-
ysis [26, 45, 57], would indiscriminately collect and unify
all possible type hints to infer each variable’s type. Since
the collected type hints could correspond to many variables
of different types, the inferred type for each single variable

https://doi.org/10.1145/3622781.3674177
https://doi.org/10.1145/3622781.3674177

Data Dependency Graph
Construction

Infeasible Data Dependency
Pruning

Context-Sensitive
Refinement

Binary

LLLVM IR

Pointer Analysis
Infeasible Indirect Call Target

Pruning

Source-Sink Graph Traversal Bug Detection

Flow-Sensitive
Refinement

over-approximated types

refined
types

MANTA
Type-Assisted Analysis

Flow-Insensitive
Inference

Global
Type Inference

Type Refinement

initial
type map

lifting

DDG, CG

points-to
map

DDG

Figure 1. Overall Design of Manta.

would be over-approximated. As represented by the blue re-
gion in Figure 2(a), where the profiling data is collected from
our experiment on several real-world projects and bench-
marks1, a flow- and context-insensitive analysis would over-
approximately infer types for many variables. On the other
hand, a high-precision type inference, such as flow-sensitive
or context-sensitive analysis [4, 29, 46, 59, 61], would avoid
indiscriminately unifying type hints together by propagating
type hints along control flow equipped with strong updates,
or by propagating type hints along valid calling contexts.
However, they cannot infer the type of a variable if no valid
type hints are collected, thereby leaving types of many vari-
ables to be 𝑢𝑛𝑘𝑛𝑜𝑤𝑛. The blue region in Figure 2(b) reveals a
large proportion of variables whose type cannot be inferred
by a flow- and context-sensitive analysis.

Observation. Our insight is that a hybrid combination of
analyses with different sensitivities can complement each
other, allowing for the precise type inference for many vari-
ables. On the one hand, a high-precision analysis (e.g., flow-
sensitive) could precisely infer types over-approximately
inferred by a low-precision analysis. Based on the results of
our experiments, the brown region in Figure 2(a) shows the
proportion of over-approximated type variables precisely in-
ferred by a flow- and context-sensitive analysis. On the other
hand, for variables whose types are inferred as 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 by
a high-precision analysis, a low-precision analysis could
instead capture ignored type hints and precisely infer the
variable’s type. The brown region in Figure 2(b) shows the
distribution of 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 type being able to be precisely in-
ferred by a flow- and context-insensitive analysis.
Solution. Based on this observation, we can precisely

infer types for more variables by using a high-precision
analysis to refine over-approximated types, and using a low-
precision analysis to infer types for type-unknown variables.
To do so, we design the first hybrid-sensitive type inference
approach, as shown in Figure 1, that progressively increases
precision to infer variable types. Specifically, it starts with a
low-precision global flow- and context-insensitive analysis
to thoroughly infer types for as many variables as possible.
Then, only for the over-approximated types, higher precision

1The used projects and benchmarks are the same as those listed in Table 3

(a) Over-Approximated Types Refined by High Precision Analysis.

(b) Unknown Types Precisely Captured by Low Precision Analysis.
Figure 2. Profiling data on 118 binaries from experiments.

context-sensitive and flow-sensitive analyses are conducted
progressively on top of the data dependence graph (DDG)
and control flow graph (CFG) to infer more precise type
results until the type is precisely resolved as a singleton. In
this way, the hybrid-sensitive analysis can infer less over-
approximated variable types with staging refinement and be
able to infer types for more variables by starting with lower
precision analyses to capture type hints thoroughly.

Similar to existing binary type inference methods [26, 45,
57], achieving absolute soundness in inferring all types is
challenging forManta. Nevertheless, with a high recall rate
of 97.2%, Manta can effectively assist with practical bug
detection in stripped binaries from two perspectives. First, a
type-based indirect call analysis utilizes the inferred types
to validate the type compatibility between arguments at
indirect call sites and function parameters to filter infeasible

2

indirect-call targets. Second, type-based data dependency
refinement can utilize the inferred types to identify the based
pointer at each binary arithmetic instruction, helping with
more precise DDG construction. Then, a program slicing-
based bug detection technique [67, 72] is performed on DDG
to precisely detect a series of vulnerabilities (§5.2).
We have implemented a tool calledManta, and exhaus-

tively evaluated it against several type inference techniques
and binary bug detection tools on several real-world projects
and IoT firmware. We make the following contributions:
• Hybrid-Sensitive Type Inference: We propose a hybrid-
sensitive type inference to infer types for most vari-
ables precisely. Experiment showsManta infers types
with precision by 78.7% and recall by 97.2%, outper-
forming existing type inference by 32.7% on average.
• Type-Assisted Static Analysis: With the assistance of
the hybrid-sensitive type inference, Manta can prune
63.9% more infeasible indirect-call targets than both
TypeArmor [76] and 𝜏-CFI [55], and perform program
slicing on binary for bug detection with 61.1% similar-
ity as on the source code.
• Many Critical Vulnerabilities: We have applied Manta
to several IoT firmware samples and detected security
bugs with only 22.1% false positive rate, among which
86 are confirmed and fixed by developers while 64
critical vulnerabilities assigned with CVE/PSV IDs.

2 Background and Motivation

We first introduce the limitation of existing type inference
in §2.1 and §2.2 and show the advantage of Manta in §2.3.

2.1 Previous Limitations on Type Inference.

Over-approximated types and unknown types are two major
problems encountered by existing type inference.
Over-Approximated Types. Over-approximated types

arise from the conflicting type hints captured by the type
inference. When a variable is analyzed to be of different
types, a principled type inference [26, 45, 57] will merge
these types together into an over-approximated result on
the lattice. Common reasons for conflicting types include:
• Type-Unsafe Idioms. C and C++ are type-unsafe lan-
guages, thus the type of a variable can be explicitly or
implicitly converted to other not-compatible types.
• Union Type. Union is a language feature where a vari-
able can be declared as multiple types and then instan-
tiated to one of them at different program locations.
• Stack Recycling. After compilation, a stack slot could
correspond to different variables declared in the same
function, which could be of different types.
• Polymorphic Function. For a polymorphic function [57],
the types of the same arguments or the return value
could be different under different calling contexts.

Unknown Types A precise static analysis [29] can avoid
conflicting types tomitigate the problem of over-approximated
types. For example, a context-sensitive type inference [57]
can avoid conflicting types brought by polymorphic func-
tions, as a unique type variable is created for each function
argument at each calling context. However, such treatment
can introduce side effects for non-polymorphic functions. It
is possible that there are no type hints to infer the type of
a variable along a calling context, and the context-sensitive
analysis prevents the chance to capture type hints from other
calling contexts. Consequently, no type hints are captured
to infer type of the corresponding variable. Similarly, a flow-
sensitive type inference restricts the type propagation direc-
tion and incorporates strong updates to infer precise types
of variables at different program positions. However, some
potential type hints not aligned with the control-flow or-
der could be ignored, such as type hints from the opposite
branch, resulting in the same problem.

2.2 Motivating Example

Figure 3(a) shows a source code example and the correspond-
ing assembly code on which flow-insensitive type inference
infers over-approximated types. Inside the branch at Lines
13-16, the union type variable v is instantiated as 𝑖𝑛𝑡64, and in-
side the opposite branch at Lines 17-20, the variable is instan-
tiated as char*. As shown in Figure 3(b), a flow-insensitive
type inference [26, 45, 57] can capture two type hints at the
two call site of printf, and infers that the variable stored in
[rsp+10h] could be of both char* and 𝑖𝑛𝑡64. Consequently,
as shown in Figure 3(c), the over-approximated type would
affect the effectiveness of type-assisted indirect call analy-
sis. Specifically, all the functions with the first parameter of
char* or 𝑖𝑛𝑡64 type would be deemed as valid indirect call
targets for both the two indirect call sites. However, in fact,
the feasible indirect call targets at Line 15 should only accept
𝑖𝑛𝑡64 type argument, and the feasible indirect call targets at
Line 19 should only accept char* type argument.

To mitigate the above problem, a flow-sensitive type infer-
ence can propagate the two type hints along two branches
respectively, and infer precise argument types for the two
indirect call sites. However, Figure 4(a) instead shows an-
other example on which a flow-sensitive [4, 29, 46, 59, 61]
type inference fails to infer types of variables. The first pa-
rameter s of the function parsestr is used twice inside the
function. Inside a security check branch at Lines 2-4, the
content of s is printed out via printf, and then the function
returns. Later inside the branch at Lines 7-9, s is added by
the variable offset and passed to the argument pchr of the
function checkstr, in which it is dereferenced. As shown in
Figure 4(b), a flow-sensitive type inference captures the type
hints at the printf (Line [6] in the assembly code) and infers
that parameter s ([rbp+var_8] in the assembly code) is a
pointer. However, this type hint cannot be propagated to the
opposite branch due to the restriction of control flow order.

3

(a) Source Code and Assembly Code

1. union Data {
2. int64_t i; char* s;
3. };
4. enum Type {
5. INT, STRING
6. };
7. struct TypedData {
8. Data d; Type t;
9. void (*fptr)(Data);

10. };
11. void foo(TypedData v) {
12. switch (v.t) {
13. case INT:
14. printf('I: %ld', v.d.i);
15. v.fptr(v.d.i);
16. break;
17. case STRING:
18. printf('S: %s', v.d.s);
19. v.fptr(v.d.s);
20. break;
……

[1]. // rdi = “I: %ld”
[2]. mov rdi, 0x4020B5h
[3]. // rsi = v.d.i
[4]. mov rsi, [rsp+10h]
[5]. call printf
[6]. ...
[7]. // rdi = v.d.i
[8]. mov rdi, [rsp+10h]
[9]. mov rcx, [rsp+20h]
[10]. call rcx

[11]. // rdi = “S: %s”
[12]. mov rdi, 0x402132h
[13]. // rsi = v.d.s
[14]. mov rsi, [rsp+10h]
[16]. call printf
[17]. ...
[18]. // rdi = v.d.s
[19]. mov rdi, [rsp+10h]
[20]. mov rcx, [rsp+20h]
[21]. call rcx

{int64_t} {char*}

(b) Flow-Insensitive Type Inference

{int64_t, char*}

(c) Imprecise Indirect Call Analysis

15: v.fptr(v.d.i)

{int64_t, char*}19: v.fptr(v.d.s)

[rsp+10h]

rdi@s[10]

rsi@s[5]

rdi@s[21]

rsi@s[14]

Type Propagation

Figure 3. Over-approximated types inferred by flow-
insensitive type inference, leading to false call targets.

As a result, the type of parameter s at Line 9 ([rbp+var_8]
at Line [9] in the assembly code) is remained unknown. Con-
sequently, as shown in Figure 4(c), a static analyzer cannot
distinguish which incoming value of pchr is the base pointer,
leading to a false NPD value flow path started from a zero
value to a pointer dereference site of pchr.

2.3 Our Approach

In a word, low-precision analysis can infer types potentially
missed by high-precision analysis, and high-precision anal-
ysis can mitigate the problem of over-approximated types
faced by low-precision analysis. As a result, instead of solely
relying on any one of them, we design a novel hybrid ap-
proach to exploit the benefits of both of them. Specifically,
as shown in the workflow graph in Figure 1, a global flow-
insensitive type inference is performed first. At this stage,
for the example in Figure 4(a), the type of argument s is
already precisely resolved as ptr. However, for the example
in Figure 3(a), the two merged types indicate a possibility
for further refinement. As a result, context-sensitive and
flow-sensitive type refinement with increasing precision is
gradually performed on the merged types until it is precisely
resolved at the two indirect call sites.

3 Preliminary Definitions

In this section, we give the definitions used in the paper.
Program Abstraction. Figure 5 shows the abstract do-

main used in our analysis. We utilize binary lifter [38] to

start

[rbp+var_8]@s[6]

end

(b) Flow-Sensitive Type Inference

[rbp+var_8]@s[9]

rdi@s[11]

{⊥}

1. void parsestr(char* s, long len) {
2. if (len <= 0) {
3. printf("Invalid string %p", s);
4. return;
5. }
6.
7. long offset = 0;
8. while(offset < len) {
9. if (checkstr(s + offset))

10. return;
11. offset++;
12. }
13. }
14. bool checkstr(char* pchr) {
15. if (*pchr == '`' || *pchr == ';') {
16. *pchr = '\x00';
17. return true;
18. }
19. return false;
20. }
……

<parsestr>
[1]. // rsi = s
[2]. mov rsi, [rbp+var_8]
[3]. // rdi = "Invalid string %p"
[4]. mov rdi, 0x4020D6
[5]. mov al, 0
[6]. call printf
[7]. …
[8]. // rdi = s
[9]. mov rdi, [rbp+var_8]
[10]. // [rbp+var_18] = offset
[11]. add rdi, [rbp+var_18]
[12]. call checkstr
[13]. …
<checkstr>
[14]. push rbp
[15]. mov rbp, rsp
[16]. mov [rbp+var_10], rdi
[17]. mov rax, [rbp+var_10]
[18]. // rax = pchr
[19]. movsx eax, byte ptr [rax]

(a) Source Code and Assembly Code

rax@s[19]

{⊥}{ptr}

{ptr}

ret

call

Control Flow Order

s@9 offset@9

0@9

pchr@15

Data Dependency

{⊥} {⊥}

{ptr}
False NPD

(c) Incorrect Data-Dependency

Figure 4. Unknown types inferred by flow-sensitive type
inference, leading to false positive data dependency.

translate binary code to LLVM IR, in which binary registers
and arguments are translated to SSA value 𝑣 ∈ V, and vast
binary instruction set for different architectures is mapped
LLVM instructions 𝑠 ∈ S. Following existing works [47], the
global and stack memory region is partitioned into a disjoint
set of objects, and the heap object is modeled by allocation-
site abstraction. These objects are represented by 𝑜 ∈ O. To
ensure the analysis scalability, we pre-process the lifted IR to
be acyclic by unrolling each loop in the control flow graph
(CFG) and the call graph, following the existing bug-finding
tools [67, 79].

Points-to Analysis. The points-to-map P defined in Fig-
ure 5 is used to construct the DDG and perform type infer-
ence onmemory objects. There are plenty of binary points-to
analyses, and we follow the state-of-the-art techniques [43,
44] based on the blockmemorymodel. The points-to analysis
is flow-, field-, and context-sensitive. For scalability consid-
eration, we adopt the bottom-up style compositional tech-
nique [78, 79] to avoid reanalyzing the same function from
different calling contexts, which has also been used in many
well-known bug-finding tools [9, 67, 79].

The points-to analysis involves a few well-identified rea-
sonable unsound choices. Specifically, in the implementation,
we follow standard choices to unroll each loop twice, break
back edges on the call graph, and collapse fields of an array
into a monolithic object when symbolic indexing is encoun-
tered. Additionally, following existing works [67, 79], func-
tion pointers are not modeled during the points-to analysis.
Furthermore, the analysis assumes parameters of a function

4

Variables 𝑣 ∈ V
Memory objects 𝑜 ∈ O

Statements 𝑠 ∈ S
Points-to map P := V ∪ O→ 2V∪O

Type map F↑/F↓ := V ∪ O→ T

Figure 5. Basic abstract domain.

Type(T) := T𝑝𝑟𝑖𝑚 | T𝑎𝑟𝑟𝑎𝑦 | T𝑜𝑏 𝑗𝑒𝑐𝑡 | T𝑓 𝑢𝑛𝑐

Primary Type(T𝑝𝑟𝑖𝑚) := T𝑟𝑒𝑔⟨𝑠𝑖𝑧𝑒 ⟩ | ⊤ | ⊥
Register Type(T𝑟𝑒𝑔) := T𝑛𝑢𝑚⟨𝑠𝑖𝑧𝑒 ⟩ | 𝑝𝑡𝑟 (T)

Numeric Type(T𝑛𝑢𝑚<𝑠𝑖𝑧𝑒>) := 𝑖𝑛𝑡⟨𝑠𝑖𝑧𝑒 ⟩ | 𝑓 𝑙𝑜𝑎𝑡 | 𝑑𝑜𝑢𝑏𝑙𝑒
Array Type(T𝑎𝑟𝑟𝑎𝑦) := T × ⟨𝑙𝑒𝑛𝑔𝑡ℎ⟩
Object Type(T𝑜𝑏 𝑗) := {⟨𝑜 𝑓 𝑓 𝑠𝑒𝑡⟩𝑖 : T𝑖 }

Function Type(T𝑓 𝑢𝑛𝑐) := {𝑎𝑟𝑔𝑖 : T𝑖 } → T

⟨𝑠𝑖𝑧𝑒⟩ := {1, 8, 16, 32, 64}
⟨𝑙𝑒𝑛𝑔𝑡ℎ⟩ ∈ N ⟨𝑜 𝑓 𝑓 𝑠𝑒𝑡⟩ ∈ N

Figure 6. Typing inManta

do not alias with each other, easing the effort to build multi-
ple partial transfer functions [78] to model different aliases
relationship from the different calling contexts. A further
discussion of the implication of these choices, as well as
other factors, on the soundness of the system, will be given
in § 6.4.
Typing Definition. Figure 6 shows the types supported

byManta. In general, the type system is similar to that of
LLVM, in which we infer pointer type and numeric type with
various sizes and precision. Furthermore, the type inference
is field-sensitive in inferring object fields and array types.
Following existing principled type inference [45], the typing
forms a lattice2, where a type can be a subtype or a parent
type of another type. For example, T𝑛𝑢𝑚⟨32⟩ is the parent
type of float, denoted by T𝑛𝑢𝑚⟨32⟩ >: 𝑓 𝑙𝑜𝑎𝑡 . Symbols ⊤ and
⊥ denote the upper and lower bound of the type lattice,
respectively. For each variable 𝑣 and memory object 𝑜 , we
maintain its upper bound and lower bound type by two type
maps F↑ (𝑣) and F↓ (𝑣).
Next, we give the definition of DDG, on which we can

perform type inference and graph-based bug detection.

Definition 1 (Data Dependency Graph). G = (N, E).
• Each of the vertex in N is denoted by 𝑣@𝑠 , indicating
that variable 𝑣 is used or defined at statement 𝑠 . For
example, the instruction ∗𝑞 = 𝑏 leads to the vertex
𝑏@ ∗ 𝑞 = 𝑏.

2The type lattice can be found in Figure 1 inside the supplementary mate-
rial [3]

Table 1. Rules for global flow-insensitive type inference.

Statement Typestates Updating

① COPY: p = q UnifyVarType(p, q), ∀ 𝑜1, 𝑜2
∈ P(𝑝) ∪ P(𝑞): UnifyObjType(𝑜1, 𝑜2)

② LOAD: p = *q ∀ 𝑜 ∈ P(𝑞) : UnifyVarType(𝑝, 𝑜)
③ STORE: *p = q ∀ 𝑜 ∈ P(𝑝) : UnifyVarType(𝑜, 𝑞)
④ TYPE-REVEALING:

UnifyVarType(𝑝, 𝑡𝑦)(i.e., p reveals as ty)

• E ⊆ N×N is the set of directed edges to represent data
dependence relations between vertices.

Most data dependencies can be derived from an instruc-
tion itself, such as 𝑐𝑜𝑝𝑦 and 𝑝ℎ𝑖 instructions. However, edges
between memory dereference sites rely on the points-to anal-
ysis. Specifically, the dependency ⟨𝑝@ ∗𝑎 = 𝑝, 𝑞@𝑞 = ∗𝑏⟩ is
constructed if and only if ∃𝑜 ∈ P(𝑏), 𝑝 ∈ P(𝑜), indicating 𝑏
points to a memory location containing 𝑝 while it is loaded.

4 Hybrid Sensitive Type Inference

In this section, we describe the global flow-insensitive type
inference in §4.1 and the two-stage type refinement in §4.2.

4.1 Global Flow-Insensitive Type Inference

At this stage, a global flow-insensitive type inference is
performed to infer types thoroughly. To do so, we apply a
unification-based algorithm to unify variable types together.

The type maps are updated during the unification process.
F↑ is updated with the join (∨) operator on the type lattice to
maintain an upper-bound type, and F↓ is updated with the
meet (∧) operator to maintain a lower-bound type. Prior the
analysis, each variable and memory field of F↑ is initialized
as ⊥, and that of F↓ is initialized as ⊤. Typing rules for each
kind of instruction are shown in Table 1.
• For value copy instructions ①, including bitcast, phi,
and call, UnifyVarType() is applied to unify the types
of incoming and outgoing values together to update
both the two type maps. Additionally, UnifyObjType
is applied on the pointed-to-by objects to unify types
of memory fields sharing the same offset.
• For memory load instructions ②, the types of the vari-
able loaded from the memory field and the types of
the field are unified. A similar handling process is per-
formed on memory store instructions ③.
• Type-revealing instructions ④ provide type hints for
type inference. Examples include type-known external
functions such as malloc(), arithmetic calculations,
or pointer dereference.

Once the global flow-insensitive type inference finishes,
the result of initial type maps is obtained. According to the

5

type map, each variable is classified into one of the following
three categories:
• (Precise Type Variable, V𝑃). The set of variables 𝑣
whose type is precisely resolved as a singleton, 𝑣 ∈
V𝑃 : F↑ (𝑣) = F↓ (𝑣), since the upper bound and lower
bound types are the same.
• (Over-Approximated TypeVariable,V𝑂). The set of
variables 𝑣 whose type is over-approximately inferred,
𝑣 ∈ V𝑂 : F↑ (𝑣) >: F↓ (𝑣) and F↑ (𝑣) ≠ F↓ (𝑣), since the
interval between upper bound and lower bound types
could be further narrowed down.
• (Unknown Type Variable, V𝑈). The set of variables
𝑣 whose type is unknown, 𝑣 ∈ V𝑈 : F↑ (𝑣) = ⊥ and
F↓ (𝑣) = ⊤, since no type hints have been captured to
update the variable’s type map during the analysis.

For 𝑣 ∈ V𝑃 , no further refinement needs to be performed
since its type is already precisely resolved, and refinement
cannot generate a better result.
Also, no further refinement should be performed on 𝑣 ∈

V𝑈 , since even a flow-insensitive type inference cannot cap-
ture any type hints to infer its type. Note that for conser-
vative consideration, their upper bound F↑ (𝑣) would be up-
dated to ⊤ and lower bound F↓ (𝑣) would be updated to ⊥
once the analysis finishes, indicating an 𝑎𝑛𝑦-𝑡𝑦𝑝𝑒 variable.
Only for 𝑣 ∈ V𝑂 , higher precision analysis could further

narrow down the type interval to increase the type inference
precision. In the next section, we give more details on how
to refine the types of these variables.

4.2 Type Refinements

4.2.1 Context-Sensitive Type Refinement. For each 𝑣 ∈
V𝑂 , context-sensitive and flow-sensitive analyses will be per-
formed progressively to refine the type map. To achieve this,
DDGperforms on-demand analysis on these over-approximated
type variables.
To infer precise types for variables 𝑣 ∈ V𝑂 , we perform

context-sensitive graph traversal on DDG to collect more
condensed type hints in the sense that:
• Context-sensitivity can be achieved via graph traver-
sal concerning CFL-reachability [65], mitigating over-
approximation brought by polymorphic functions.
• Only aliased variables would be searched on the DDG,
mitigating the over-approximation brought by merg-
ing types of non-aliased variables.

Algorithm 1 shows the pseudocode for the process:
• CTX_REFINEMENT() shows the main procedural of the
refinement. For each variable 𝑣 ∈ V𝑂 , the function
first collects its root values by backward traversal on
the DDG with FIND_ROOTS(). Then all the type hints
on the derivatives of the root nodes are collected via
COLLECT_TYPES(), which will be merged together and
used to update the type map of variable 𝑣 .

Algorithm 1: Context-Sensitive Type Refinement
1 Input Data Dependency Graph 𝐷𝐷𝐺 .
2 Input Over-Approximated Type Variables V𝑂 .
3 Function CTX_REFINEMENT():
4 for v ∈ V𝑂 do

5 𝑡𝑦𝑝𝑒𝑠 ← ∅
6 for 𝑟𝑜𝑜𝑡 ∈ FIND_ROOTS(𝑣) do

7 𝑡𝑦𝑝𝑒𝑠 ← 𝑡𝑦𝑝𝑒𝑠 ∪ COLLECT_TYPES(𝑟𝑜𝑜𝑡)

8 if 𝑡𝑦𝑝𝑒𝑠 ≠ ∅ then
9 F↑ (𝑣) ← LUB(𝑡𝑦𝑝𝑒𝑠)

10 F↓ (𝑣) ← GLB(𝑡𝑦𝑝𝑒𝑠)

11 Function FIND_ROOTS(𝑣):
12 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡𝑠 ← ∅
13 for p in 𝐷𝐷𝐺.parents(𝑣) do

14 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘.insert(context(𝑝, 𝑣))
15 if 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘 .valid() then

16 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡𝑠 ← 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡 ∪ FIND_ROOTS(𝑝)

17 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘.pop()
18 if 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡𝑠 == ∅ then
19 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡𝑠 ← 𝑣

20 return 𝑟𝑜𝑜𝑡_𝑠𝑒𝑡𝑠
21 Function COLLECT_TYPES(𝑣):
22 𝑡𝑦𝑝𝑒_𝑠𝑒𝑡𝑠 ← type_annotations(𝑣)

23 for c in 𝐷𝐷𝐺.childs(𝑣) do

24 𝑐 𝑓 𝑙_𝑠𝑡𝑎𝑐𝑘.insert(context(𝑝, 𝑣))
25 if 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘 .valid() then

26 𝑡𝑦𝑝𝑒_𝑠𝑒𝑡𝑠 ← 𝑡𝑦𝑝𝑒_𝑠𝑒𝑡𝑠 ∪
COLLECT_TYPES(𝑝)

27 𝑐 𝑓 𝑙_𝑠𝑡𝑎𝑐𝑘.pop()
28 return 𝑡𝑦𝑝𝑒_𝑠𝑒𝑡𝑠

• FIND_ROOTS() shows the procedure to find the root
nodes via backward traversal on the DDG. One key
point is that 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘 maintains the calling context
while traversing the DDG, and unreachable call con-
texts would be rejected to achieve context sensitivity.
Note that since recursive cycles have been removed
from the program during pre-processing, calling con-
texts can be tracked via pushing and popping from a
stack, without risk of non-termination. Additionally,
when Manta encounters a binary instruction such as
add or sub during traversal, it would turn to resolve the
type of operands first and performs feasibility checking
(discussed in §5.2) to determine the correct searching
direction.
• COLLECT_TYPES() shows the procedural to collect type
hints of a root node. At a high level, a forward DDG tra-
versal with CFL-reachability validation is performed

6

)2

(2(1
(3

)3)4

ptrint64

ptr

2: v = call foo(p)

2: v = call foo(p)

foo: ret

1: v = call foo(q) 3: v = call bar(p)

bar: ret

p = …q = …

REFINE TARGET

data dependency

Figure 7. Context-Sensitive Type Refinement

on the root node, and all the type annotations on the
traversed nodes will be collected and returned.

Example 4.1. Figure 7 shows an example of context-sensitive
type refinement on 𝑣 . To refine the type, a context-sensitive
backward search first detects the root node 𝑝 . Next, all valid
type hints are collected through a forward CFL-reachable
traversal on 𝑝 , and only the type hint for 𝑖𝑛𝑡64 is collected.
The two type annotations of 𝑝𝑡𝑟 are not collected due to
CFL-unreachable paths, resulting in both F↑ (𝑣) and F↓ (𝑣)
being precisely resolved as 𝑖𝑛𝑡64.

4.2.2 Flow-Sensitive Type Refinement. For a variable
whose type is still over-approximated, we further perform
flow-sensitive type refinement to refine its type. Given an
over-approximated type variable 𝑣 ∈ V𝑂 , the flow-sensitive
refinement is performed in two ways. First, only reachable
type hints following the control-flow order are collected to
reveal variables’ types. Second, the def- and each use-site 𝑠
of variable 𝑣 , denoted by 𝑣@𝑠 , would be treated as a distinct
variable to be inferred its type. In our formalism, the type of
𝑣 at location 𝑠 is represented by F↑ (𝑣@𝑠) and F↓ (𝑣@𝑠), based
on an extended notation of the type map defined in Figure 5.
For variable 𝑣 ∈ V𝑈 ∪ V𝑃 , at each of its use site 𝑠 we have
F↑/F↓ (𝑣) == F↑/F↓ (𝑣@𝑠), since flow-sensitive refinement
is not required to be performed.

Algorithm 2 shows the pseudocode for flow-sensitive type
refinement:
• FLOW_REFINEMENT() shows the main procedural of
the refinement. Similarly, for each 𝑣 ∈ V𝑂 , the proce-
dural invokes FIND_ROOTS() to collect its root values,
which can be used to check the alias relationship. Next,
at def- and each use-site 𝑠 of 𝑣 , we collect type hints
on aliases of 𝑣 reachable to 𝑠 via REACHABLE_TYPES().
The collected type hints would be merged to represent
the inferred type of 𝑣@𝑠 .
• REACHABLE_TYPES() performs backward searching on
𝐶𝐹𝐺 to collect type annotations on aliases of 𝑣 reach-
able to 𝑠 . Specifically, if the currently traversed state-
ment is a type-revealing site of an alias of 𝑣 , the corre-
sponding revealed type would be collected. The search-
ing stops when a type annotation is met during the
traversal such that strong update is applied.

Algorithm 2: Flow-Sensitive Type Refinement
1 Input Data Dependency Graph 𝐷𝐷𝐺 .
2 Input Control Flow Graph 𝐶𝐹𝐺 .
3 Input Over-Approximated Type Variables V𝑂 .
4 Function FLOW_REFINEMENT():
5 for v ∈ V𝑂 do

6 𝑣_𝑟𝑜𝑜𝑡𝑠 ← FIND_ROOTS(𝑣)

7 for 𝑠 ∈ get_users(𝑣) ∪ {𝑣} do
8 𝑡𝑦𝑝𝑒𝑠 ← REACHABLE_TYPES(𝑠, 𝑣_𝑟𝑜𝑜𝑡𝑠)

9 if 𝑡𝑦𝑝𝑒𝑠 ≠ ∅ then
10 F↑ (𝑣@𝑠) ← LUB(𝑡𝑦𝑝𝑒𝑠)

11 F↓ (𝑣@𝑠) ← GLB(𝑡𝑦𝑝𝑒𝑠)

12 Function REACHABLE_TYPES(𝑠 , 𝑟𝑜𝑜𝑡𝑠):
13 for 𝑣 ∈ get_oprands(𝑠) ∪ {𝑠} do
14 if FIND_ROOTS(𝑣) ∩ 𝑟𝑜𝑜𝑡𝑠 ≠ ∅ then
15 if type_annotation(𝑣@𝑠) ≠ ∅ then
16 return type_annotation(𝑣@𝑠)

17 𝑡𝑦𝑝𝑒𝑠 ← ∅
18 for p in 𝐶𝐹𝐺.parents(𝑠) do

19 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘.insert(context(𝑝, 𝑠))
20 if 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘 .valid() then

21 𝑡𝑦𝑝𝑒𝑠 ← 𝑡𝑦𝑝𝑒𝑠 ∪
REACHABLE_TYPES(𝑝, 𝑟𝑜𝑜𝑡𝑠)

22 𝑐𝑡𝑥_𝑠𝑡𝑎𝑐𝑘.pop()
23 return 𝑡𝑦𝑝𝑒𝑠

The flow-sensitive refinement can effectively handle the
over-approximation introduced by type casting or type in-
stantiation of variables at different use sites, while also miti-
gating some compiler optimizations, such as stack recycling,
where multiple variables of different types can be stored in
the same stack location at different program points.

Example 4.2. Figure 8 shows the flow-sensitive type refine-
ment on the example in Figure 3. To infer the type of 𝑣 .𝑑
used as function arguments at two indirect call sites,Manta
performs backward searching on CFG from these two sites,
respectively. For the use site at Line 15, one type annotation
of 𝑖𝑛𝑡64 at Line 14 is collected; for the use site at Line 19, one
type annotation of 𝑖𝑛𝑡64 at Line 18 is collected. As a result,
the type of 𝑣 .𝑑 can be precisely inferred as 𝑖𝑛𝑡64 and 𝑝𝑡𝑟 (𝑖𝑛𝑡8)
at two call sites, respectively.

5 Type-Assisted Static Analysis

In this section, we describe the type-assisted static analysis
clients in detail, including type-based indirect call analysis
in §5.1 and type-based data-dependency pruning in §5.2.

7

int64 ptr(int8)

19: v.fptr(v.d.s)

v.d

15: v.fptr(v.d.i)

18: printf(“S: %s”, v.d.s)14: printf(“I: %ld”, v.d.i)

control flow

Figure 8. Flow-Sensitive Type Refinement

5.1 Type-Based Indirect Call Analysis

At a high level, inferred types of arguments and return values
at each indirect call and address-taken function are checked
to validate the calling feasibility. Differing from existing
works [55, 76] in which only argument number and width
are recovered for compatibility checking, richer types in
Manta can prune away more infeasible indirect call targets
effectively.

We validate the indirect call feasibility from the following
perspectives:
• The number of the arguments at the call site should
be greater than that of the function definition.
• For each actual argument 𝑎𝑟𝑔𝑖 at indirect call site 𝑠
and parameter 𝑝𝑎𝑟𝑖 of function 𝑓 , their types should
satisfy that F↑ (𝑎𝑟𝑔𝑖@𝑠) >: F↓ (𝑝𝑎𝑟𝑖@𝑒𝑛𝑡𝑟𝑦𝑓).
• For actual return value 𝑟𝑒𝑡 at call site and formal return
value 𝑟𝑒𝑡𝑓 at function definition, their types should
satisfy that F↑ (𝑟𝑒𝑡𝑓@𝑒𝑥𝑖𝑡𝑓) >: F↓ (𝑟𝑒𝑡@𝑠).

For pointer type and memory type, type comparison is
performed on each field recursively.

Example 5.1. Back to figure 8, the type of argument 𝑣 .𝑑.𝑠
of the indirect call site at Line 19 is precisely inferred as
𝑝𝑡𝑟 (𝑖𝑛𝑡_8). As a result, only functions with at most one ar-
gument whose lower bound type is at most 𝑝𝑡𝑟 (𝑖𝑛𝑡_8) can
be feasible indirect call targets.

5.2 Infeasible Data Dependency Pruning

The inferred types can also help us prune away infeasible
data dependency regarding pointer arithmetic calculation,
in case these data dependency relationships lead to false
positives while performing program slicing on DDG. Table 2
shows the detailed rules for the pruning.
• For 𝑎𝑑𝑑 instruction, if the result is of 𝑝𝑡𝑟 type, then
this instruction should be pointer arithmetic in which
a base pointer is added by an offset of 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 type. In
such a case, we prune away the data dependency from
the numeric operand to the result pointer since the
numeric operand is not an alias of the result pointer.
• For 𝑠𝑢𝑏 instruction, if the result is of 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 type and
the operand is of 𝑝𝑡𝑟 type, then this instruction should
calculate the offset between two pointers. In such case,
we prune away the dependency from 𝑝𝑡𝑟 type operand

Table 2. Rules for pruning infeasible data dependency. The
second column denotes the rule, in which TY(𝑣) = 𝑡𝑦 is
the abbreviation of "F↑ (𝑣) = F↓ (𝑣) = 𝑡𝑦". The third column
denotes the pruned data dependency, in which 𝑣 → 𝑟 repre-
sents the pruned data dependency from 𝑣 to 𝑟 .

Opcode Rules Infeasible Dep

s: R = ADD OP1, OP2 TY(R@s) = 𝑝𝑡𝑟 ∧ TY(OP1@s) = T𝑛𝑢𝑚 OP1 → R
s: R = ADD OP1, OP2 TY(R@s) = 𝑝𝑡𝑟 ∧ TY(OP2@s) = T𝑛𝑢𝑚 OP2 → R

s: R = SUB OP1, OP2 TY(R@s) = T𝑛𝑢𝑚 ∧ TY(OP1@s) = 𝑝𝑡𝑟 OP1 → R
s: R = SUB OP1, OP2 TY(R@s) = T𝑛𝑢𝑚 ∧ TY(OP2@s) = 𝑝𝑡𝑟 OP2 → R
s: R = SUB OP1, OP2 TY(R@s) = 𝑝𝑡𝑟 OP2 → R

to 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 type result since the calculation result is
not the alias of the pointer operand anymore. Similarly,
if the result is of 𝑝𝑡𝑟 type, then the dependency from
the second operand to return is pruned.

Example 5.2. Back to the example in Figure 4(c), there is a
false positive NPD value flow path starting from constant 0
at Line 9 to *pchr at Line 15. If the type inference can infer
that the type of offset at line 9 is of 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 type, then the
data dependency edge from offset to *pchr can be pruned
away. As a result, the false positive NPD will not be detected.

5.3 Source-Sink DDG Traversal Bug Detection

Following past works [72, 75], we model the bug detection
as program slicing over DDG with path-feasibility validation.
For example, an NPD vulnerability can be detected by cap-
turing a feasible value flow path from which a NULL value
can flow to a pointer dereference site.

By describing the specification of sources and sinks, a se-
ries of vulnerabilities can be detected. Specifically, in this
paper, we set up example checkers for five representative
security bugs for evaluation purposes, including Null Pointer
Dereference (NPD), Return Stack Address (RSA), Use After
Free (UAF), OS Command Injection (CMI) and Buffer Over-
flow (BOF). (The details of these specifications are shown
in Table 4 inside the supplementary material [3]). Besides,
users of Manta can easily implement a new bug checker
by specifying the sources and sinks of the vulnerabilities to
detect.

6 Evaluation

This section evaluates the following research questions:
• RQ1: How effective is the hybrid-sensitive type infer-
ence of Manta compared with existing echniques?
• RQ2: How effective are the inferred types of Manta
assisting with static analysis compared with existing
type inference techniques?
• RQ3: How effective isManta as a static binary bug-
finding tool compared to others?

Benchmark. The benchmarks for type inference evalu-
ation contain 14 large-scale open-source projects, and the

8

Table 3. Type inference precision and recall on variables in 14 large-scale open source projects and coreutils benchmarks.

Project KLoC #Vars

Dirty [17] Ghidra [5] RetDec [38] Retypd [57]

Manta

FI FS FI + FS FI + CS + FS
%Prec %Recl %Prec %Recl %Prec %Recl %Prec %Recl %Prec %Recl %Prec %Recl %Prec %Recl %Prec %Recl

vsftpd 16 765 68.0 89.2 33.9 59.7 36.5 36.5 25.4 89.1 13.3 97.9 26.8 98.6 38.6 96.6 77.1 94.2
libuv 36 1,212 71.2 97.6 31.6 51.1 39.6 39.6 29.4 86.3 41.9 98.9 21.6 99.7 56.1 98.9 85.0 98.9

memcached 48 1,033 28.3 90.6 19.1 34.8 49.4 49.4 3.2 98.6 37.1 96.2 32.0 98.8 58.8 95.9 83.2 95.5
lighttpd 89 2,454 60.1 88.8 36.1 54.3 39.6 39.6 △ 17.9 99.5 36.6 99.0 49.4 98.5 93.2 98.0
tmux 110 3,607 63.1 87.6 33.9 59.0 36.3 36.3 25.1 99.4 27.7 98.7 46.7 98.1 82.6 96.6

coreutils 115 35,036 69.8 85.5 31.8 73.4 55.5 55.5 25.9 88.4 60.4 98.7 18.9 99.0 70.2 98.0 84.0 97.7
openssh 119 3,928 61.8 88.3 36.9 68.7 40.7 40.7 31.6 88.3 23.1 99.3 27.2 99.7 44.0 99.0 85.8 98.3
wolfSSL 122 4,634 61.6 87.4 22.6 66.8 40.9 40.9 18.4 88.9 18.7 98.4 30.7 98.0 45.3 96.7 77.7 95.4
redis 179 6,947 55.6 82.1 32.2 56.6 32.9 32.9

△

28.2 97.5 23.4 98.7 48.0 96.6 78.6 95.7
libicu 317 12,251 52.0 91.5 41.0 68.6 40.6 40.6 27.3 99.3 25.5 99.3 48.3 98.7 86.1 98.3
vim 416 13,891 ‡ 34.2 54.4 47.1 47.1 25.1 99.4 43.6 98.9 60.8 98.4 85.5 97.8

python 560 11,178 45.7 67.6 24.7 24.7 17.5 99.7 15.9 99.4 32.3 99.1 71.1 98.1
wrk 594 14,225 78.5 90.8 67.2 78.5 27.2 27.2 25.1 98.9 13.0 99.4 36.7 98.4 74.8 96.3

ffmpeg 1,213 68,576 72.4 85.1 22.8 60.3 41.8 41.8 45.2 97.7 16.4 99.4 56.5 97.3 72.9 96.7
php 1,358 20,007 43.7 87.4 30.9 59.7 31.2 31.2 28.9 98.6 22.8 98.9 47.1 97.8 77.2 97.2
Total. 5,177 223,256 63.7% 86.9% 32.2% 64.0% 41.0% 41.0% 25.2% 88.6% 35.9% 98.5% 22.3% 99.2% 53.1% 97.9% 78.7% 97.2%

△ denotes the type inference cannot finish analysis in 72 hours.
‡ denotes the type inference crashes.

coreutils benchmarks include 104 separate binaries. These
projects range from tens of thousands to millions of lines
of code, covering a broad spectrum of applications such
as servers, databases, and widely used third-party libraries.
We compiled these projects into binaries using the building
systems’ default optimization settings, including -O2, -O3,
-Ofast, to conform to the real-world scenario. To demonstrate
Manta’s effectiveness in real-world binary bug detection,
we also selected 9 IoT firmware samples from famous ven-
dors and performed bug detection on them. All experiments
were conducted on a server with two 20-core Intel(R) Xeon
CPU@2.20GHz CPU and 256GB physical memory running
Ubuntu-20.04.

6.1 Comparison with Existing Type Inference

Metrics. We evaluate the ability to infer first-layer types of
function parameters and measure the quality by precision
(P) and recall (R). We measure precision by the proportion
of variables whose type is correctly inferred and measure
recall by the proportion of variables whose type is captured
by the type inference. For example, suppose a type inference
concludes that a type is 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 (considered as any types
in the analysis) or produces a range including the actual
type; the case will be counted toward the recall contribution
since the inferred type results include the actual type. To
obtain ground truth variable types for evaluation, we parse
the DWARF debugging information to get the defined types
of variables in the source code. As addressed in ReTypd’s [57]
evaluation, in a few cases, source types could be less precise
than what a type inference tool can infer due to type-unsafe
usages. For instance, a variable may be defined as uint64_t
but actually used as a pointer. Following the existing evalua-
tion convention, we did not specifically address these cases
and evaluated all the tools with the same metrics to ensure
fairness in the evaluation.

We compare Manta with four existing type inference
tools: Dirty [17], Ghidra [5], RetDec [38] and Retypd [57].
Furthermore, we set four comparison groups for Manta.
Manta-FI only performs the imprecise flow-insensitive type
inference,Manta-FS only performs flow-sensitive analysis,
Manta-FI+FS combines them together in a staging approach,
and Manta-FI+CS+FS performs the full-stage analysis.
Table 3 shows the type inference precision and re-

call on benchmarks. Among all the comparison groups,
Manta-FI+CS+FS achieves the best result where the pre-
cision is 78.7% and recall is 97.2%, outperforming Dirty,
Ghidra, RetDec and Retypd, whose precision and recall is
63.7%/86.9%, 32.2%/64.0%, 41.0%/41.0% and 25.2%/88.6%

respectively.
Analysis of Other Tools. Dirty is the state-of-the-art

data-driven type inference technique that achieves a good
result. It is powerful and can predict variable and structure
names, even though our downstream static analysis applica-
tion does not request such information. However, since these
data-driven approaches guess types, they cannot have high
recall as Manta and cannot achieve high precision as the
prediction could be incorrect. Ghidra is a famous decom-
piler equipped with type inference. It performs a heuristic
rule-based analysis by modeling some access patterns and
only performs regional type propagation. Thus, it cannot
achieve a satisfactory inference result. During the manual
inspection, we also noticed that many variables are inferred
as undefined when there are no hints collected to infer the
type. Retdec is a binary lifter equipped with a type infer-
ence technique similar to Ghidra, but the difference is that
it does not produce unknown type since its output should
be a valid LLVM IR in which all values should have type.
As a result, it will mark the value whose type cannot be
inferred as i32; such treatment introduces low recall as lots

9

50.5%

12.1%1.5%

35.9%

FI

0.7%

76.2%

0.8%

22.3%

FS

32.7%

12.1%

2.1%

53.1%

FI + FS

6.4%
12.1%

2.8%

78.7%

FI + CS + FS

Figure 9. The proportion of inferred types result generated
by a combination of different analysis sensitivity.

of pointer type variables are inferred as integer type. Re-
typd is a principled type inference based on a subtyping
system and is implemented as an open-source plugin on top
of Ghidra. However, its core is a constraint-solving engine
performing transitive closure analysis with O(𝑁 3) time com-
plexity, which is inefficient when analyzing large binaries.
Our experiment shows it can only finish analysis on a few
large-scale projects in 72 hours.
Ablation Analysis. The standalone Manta-FI and

Manta-FS cannot achieve high precision. We investigate
the deep reason behind this by analyzing the distribution
of inferred types. As shown in Figure 9, 50.5% of types
are over-approximately analyzed by Manta-FI, while 76.2%
𝑢𝑛𝑘𝑛𝑜𝑤𝑛 types cannot be inferred byManta-FS. By combin-
ing both,Manta-FI+FS can infer types for a large portion of
𝑢𝑛𝑘𝑛𝑜𝑤𝑛 types variable and refine many over-approximated
types, contributing to higher precision. However, some over-
approximated types will be directly refined as 𝑢𝑛𝑘𝑛𝑜𝑤𝑛
in the flow-sensitive refinement stage. To mitigate the
problem, Manta-FI+CS+FS utilizes a flow-insensitive but
context-sensitive intermediate stage to resolve these over-
approximated types in case they are directly inferred as
𝑢𝑛𝑘𝑛𝑜𝑤𝑛 due to ignoring all the potential type hints. As
a result, Manta-FI+CS+FS achieves the highest precision.
The result also reveals a slight side effect; the higher pre-
cision comes with a few incorrect inferred types, leading
to lower recall. The core reason behind the phenomenon
is that some typing rules are not always correct due to the
type-unsafe usage in the C/C++ language. For example, a
typical case is that some pointer-type variables could be
compared with a special integer indicating an error value
(e.g., -1). Since the typing rules inside Manta decide that
two compared variables should have the same types, it will
incorrectly infer the pointer as an integer in such a case.

Scalability.Manta can scale to large binaries with accept-
able time and memory resources. For example, even on large
projects like FFmpeg with a million lines of code,Manta can
finish the type inference in 38 minutes with 64G memory.

y = 0.0235x - 0.6139
R² = 0.8316

y = 0.0429x + 0.8539
R² = 0.9132

0.0

15.0

30.0

45.0

60.0

75.0

100 300 500 700 900 1,100 1,300 1,500

Ti
m

e
(m

in
) /

 M
em

or
y

(G
)

KLoCTime(min) Memory(G)

Figure 10. Type inference performance based on runtime
data. The x-axis stands for the number of lines in a project
(KLoC) and the y-axis stands for the time and memory cost.

Figure 10 further gives the fitting curves over the data col-
lected from evaluation, showing that the performance almost
increases linearly as the project size increases.

6.2 Downstream Evaluation on Static Analysis

In this section, we evaluate the effectiveness of the inferred
types in assisting with two downstream static analysis tasks.
The first task is to utilize the inferred type to resolve indirect
call targets, and the second task is to refine the DDG and
better help with program slicing for bug detection.

6.2.1 Type-Assisted Indirect Call Analysis. We evalu-
ated type-based indirect call analysis on the 14 open-source
projects used in previous experiments. Furthermore, except
for the above type inference tools, we further compared
with two existing type-based binary indirect call analysis
TypeArmor [76] and 𝜏-CFI [55]. TypeArmor uses the num-
ber of arguments to prune away infeasible targets, and 𝜏-CFI
further utilizes the width of arguments. Since the type infor-
mation has already been included inManta, we compared
it with them based on our implementation.

Metrics. To obtain the ground truth data, we utilized the
type in the source code to perform the type-based indirect
call analysis [8]. The indirect call targets pruned away by
the source-level analysis are considered infeasible, and the
remaining are considered feasible. To match the results be-
tween source- and binary-level analysis, we kept .𝑑𝑒𝑏𝑢𝑔_𝑙𝑖𝑛𝑒
sections in binary to map each indirect call instruction to
its source file position and to obtain the names of address-
taken functions. Precision and recall can be calculated with
a standard formula, where higher precision indicates more
pruning on infeasible targets, and higher recall means less
incorrect pruning on feasible targets. Note that even though
some feasible targets generated by source-level type-based
indirect call analysis contain false positives, a binary-level
type-based approach still should not refine more targets than
the source-level counterparts. Besides, following existing
works, we analyzed the Average Indirect Call Target (AICT)
to measure the effectiveness of the pruning.

10

Table 4. Type-based indirect call analysis Average Indirect Call Targets (#AICT) and precision (P) assisted by type inference.

Project # AT

Source

Dirty Ghidra RetDec Retypd TypeArmor 𝜏-CFI Manta

[17] [5] [38] [57] [76] [55] FI FS FI + FS FI + CS + FS
#AICT #AICT (P) #AICT (P) #AICT (P) #AICT (P) #AICT (P) #AICT (P) #AICT (P) #AICT (P) #AICT (P) #AICT (P)

1. vsftpd 29 4 23.4 (21.4%) 24.0 (18.6%) 19.0 (33.4%) 24.5 (16.8%) 26.4(10.3%) 25.9(12.3%) 25.6(13.2%) 25.9(12.3%) 25.0(15.7%) 22.8(24.5%)
2. libuv 87 11 58.5 (36.3%) 35.6 (59.0%) 50.4 (45.9%) 52.0 (43.1%) 74.5(9.2%) 73.4(10.8%) 70.1(15.6%) 70.1(15.6%) 65.2(22.6%) 63.7(24.7%)
3. memcached 64 7 50.2 (24.0%) 27.0 (42.5%) 11.7 (46.2%) 64.0 (0.0%) 60.3(6.5%) 60.0(7.0%) 46.3(30.9%) 60.0(7.0%) 44.3(34.5%) 43.0(36.8%)
4. lighttpd 103 18 72.8 (32.5%) 43.6 (52.6%) 45.9 (57.3%) △ 80.5(24.7%) 78.3(27.3%) 77.6(28.1%) 78.2(27.3%) 76.5(29.4%) 73.3(33.2%)
5. tmux 610 18 348.7 (30.8%) 255.6 (37.1%) 301.5 (37.1%) 497.7(18.8%) 480.2(21.7%) 479.5(21.8%) 480.0(21.7%) 473.7(22.8%) 459.6(25.2%)
6. openssh 177 31 141.0 (20.9%) 81.7 (45.2%) 36.5 (56.0%) 112.3 (38.0%) 127.1(31.3%) 122.8(34.4%) 120.1(36.3%) 122.5(34.6%) 115.5(39.5%) 79.5(65.2%)
7. wolfssl 13 3 7.0 (38.5%) 8.8 (28.5%) 5.8 (35.5%) 6.4 (36.3%) 10.2(28.2%) 9.6(34.3%) 9.5(35.4%) 9.6(34.3%) 9.2(38.2%) 8.9(40.7%)
8. redis 1058 43 657.4 (33.4%) 540.0 (31.8%) 557.9 (38.3%)

△

856.3(19.3%) 845.9(20.2%) 825.6(22.2%) 844.4(20.4%) 806.6(24.0%) 766.4(28.0%)
9. libicu 1281 53 1152.0 (10.3%) 1239.1 (3.3%) 517.5 (55.6%) 992.7(23.4%) 938.4(27.8%) 909.3(30.2%) 931.8(28.3%) 875.9(32.9%) 807.7(38.4%)
10. vim 1251 32 ‡ 307.0 (36.6%) 361.6 (36.0%) 798.8(36.9%) 767.8(39.4%) 745.5(41.2%) 763.5(39.7%) 704.9(44.6%) 600.5(53.2%)
11. python 3128 336 989.8 (40.8%) 886.0 (37.9%) 2553.0(20.2%) 2549.6(20.3%) 2541.7(20.6%) 2537.9(20.7%) 2514.0(21.5%) 2398.2(25.5%)
12. wrk 2069 94 1126.9 (44.7%) 733.7 (52.7%) 723.4 (49.2%) 1600.7(23.5%) 1566.3(25.2%) 1547.9(26.1%) 1549.6(26.0%) 1471.2(30.0%) 1336.7(36.8%)
13. ffmpeg 9059 393 8346.6 (8.1%) 5021.8 (33.4%) 3174.8 (47.0%) 7357.8(19.5%) 7122.0(21.9%) 5899.8(35.9%) 7108.4(22.1%) 5512.5(40.3%) 5044.1(45.5%)
14. php 4331 136 3313.9 (20.7%) 2171.4 (30.8%) 2382.1 (39.2%) 3558.2(17.2%) 3522.9(18.0%) 3473.4(19.2%) 3520.0(18.1%) 3431.7(20.2%) 3299.2(23.3%)
Geomean. 439.6 31.9 242.1 (24.1%) 208.8 (31.6%) 169.8 (43.2%) 35.8 (31.6%) 351.9 (18.8%) 342.6 (20.8%) 326.8 (25.8%) 340.6 (21.6%) 315.5 (28.5%) 289.8 (34.1%)
△ denotes the type inference cannot finish analysis in 72 hours.
‡ denotes the type inference crashes.

87.8%

69.3%

83.8%

68.2%

99.6% 99.3%

0.0%

25.0%

50.0%

75.0%

100.0%

Dirty Ghidra Retypd RetDec TypeArmor τ-CFI

99.3% 99.3% 99.3% 99.3%

FI FS FI+FS FI+CS+FS

MANTA

Figure 11. Recall of type-based indirect call analysis.

Precision. Table 4 shows the indirect call analysis result.
In summary, Manta-FI+CS+FS can prune away much more
infeasible indirect call targets than TypeArmor and 𝜏-CFI
(34.1% vs 18.8%/20.8%), indicating its effectiveness. Com-
pared with other type inference tools, Manta still shows an
advantage, benefiting from the high precision of Manta’s
inferred types. Despite RetDec can help with pruning more
indirect call targets, we indicate that such precision comes
with very low recall, which will be shown below.

Recall. Figure 11 shows the geometric mean of indirect
call analysis recall assisted with different type inference.
All the ablation groups of Manta, TypeArmor, and 𝜏-CFI
exhibit very high recall (99.3%-99.6%), while other type in-
ference tools are relatively low in recall (68.2%-87.8%). As
shown by the evaluation, the recall of the type-based indirect
call analysis is directly affected by the recall of the type in-
ference, as a type inference tool with more incorrect inferred
types would lead to more incorrect pruning of indirect call
targets. For example, when assisted with RetDec with 41.0%
recall in type inference, the recall of indirect call analysis is
only 68.2%, meaning that a substantial amount of feasible
indirect call targets are incorrectly pruned away.

6.2.2 Infeasible Data Dependency Pruning. To eval-
uate how the refined DDG can benefit bug detection, we
perform program slicing on five security vulnerability types
on the refined DDGwith different type inference approaches.
We measure the similarity between the slicing results gener-
ated by Pinpoint on source code.

47.8%

32.8%

56.8%

FI FS FI+FS FI+CS+FS

MANTA

61.2%

23.8% 21.3% 20.3%

2.4%
0.00%

15.00%

30.00%

45.00%

60.00%

Dirty Ghidra Retypd RetDec

Figure 12. F1 score of source-sink pair program slicing.

Metrics. We regard each sliced source-sink pair as a unit
and take the result from Pinpoint on source code as ground
truth. Then, the F1 score is calculated to measure the simi-
larity between the source-sink pair detected on binary and
detected by Pinpoint on source code. Similar to the evalua-
tion of indirect call analysis, debug_line section in binary is
kept to perform matching between compiled and lifted IR
for evaluation purposes.

Result. Figure 12 shows the comparison result on F1 score
between different tools3.Manta achieves the highest f1 score
by 61.2%. Since the precision of inferred type is lower for
other ablation groups, the sliced source-sink pairs contain
more false positives as more infeasible data dependency can-
not be pruned away. Other type inference has lower f1 scores,
ranging from 2.4% to 23.8%. The lower f1 score is due to the
lower recall of the type inference, resulting in some real
source-sink pairs being incorrectly pruned away. For exam-
ple, Retdec infers many pointer-type variables into integer
type, leading to incorrect data-dependency pruning.

6.3 Effectiveness of Real-World Bug Detection

To evaluate Manta’s ability to detect bugs in real-world
binaries, we compared it with three existing binary bug-
finding tools, cwe_checker [1],Arbiter [75] and SaTC [15],
and manually checked the bug reports generated on nine IoT
firmware samples. If one bug report contains more than 100

3The detailed evaluation data is shown in Table 2 inside the supplementary
material [3]

11

Table 5. Comparison among bug-finding tools in false positives (#FP), reports (#R), and time in seconds (Time).

Model

Arbiter cwe_checker SaTC Manta Manta-Notype

#FP #R Time #FP #R Time #FP #R Time #FP #R Time #FP #R Time

Netgear SXR80 NA NA NA 64 68 560 100%† 146 81 14 43 1160 34 64 1758
Zyxel NR7101 0 0 0 20 30 126 0 0 20 5 19 190 12 26 177
Tenda A15 NA NA NA NA NA NA 92%† 152 167 6 21 867 13 29 1158

TRENDNet TEW-755AP NA NA NA 64%† 332 278 88%† 143 767 10%† 136 123 26%† 170 211
ASUS RT-AX56U NA NA NA 14 17 190 19 19 337 4 19 175 15 30 277
TOTOLink LR350 0 0 0 4 10 98 97%† 441 132 2 15 63 4 17 66

TOTOLink NR1800X 0 0 0 3 8 112 97%† 346 148 4 28 67 32 56 81
TP-Link WR940N NA NA NA NA NA NA 100%† 661 644 38 99 1760 73%† 236 2825
H3C MagicR200 NA NA NA NA NA NA 100%† 146 158 3 8 1053 17 22 1504

FPR NA – 72.3% – 97.4% – 23.1% – 52.8% –
† means we compute the FPR based on 100 randomly-selected reports; NA means the analyzer crashes on the firmware sample.

bugs, we randomly choose 100 to review to ease the manual
effort. Furthermore, to validate the effectiveness of the type-
assisted static analysis, we add an ablation group Manta-
Notype where type compatibility checking is disabled.

Precision.As shown in Table 5, the FPR of cwe_checker,
SaTC, Manta, and Manta-Notype is 72.3%, 97.4%, 23.1%,
and 52.8%, respectively. In our experiments, Arbiter could
not produce any bugs in these benchmarks. Upon profiling
it, we found that its under-constrained symbolic execution
stage pruned away all the bugs, including some true positives
detected by Manta. In conclusion, the comparison indicates
thatManta is the most effective in terms of precision and
utility. Compared withManta-Notype, type constraints can
significantly reduce false reports by 73.9%, demonstrating
the necessity and effectiveness of our type inference.

Comparison with Other Tools. While manually study-
ing the bug reports of other tools, we have the following
observations. First, these tools do not utilize type informa-
tion, so they have higher FPR or limitations in finding certain
bugs. For example, some false positives reported by SaTC are
due to a tainted string being converted into an integer before
reaching system function. Thus, attackers cannot directly
control the command of system. Another example is that
cwe_checker’s Missing Null Check detector cannot detect
the case where a null pointer originates from a constant zero
value in the binary since it cannot decide whether the zero
is an integer or a null pointer.
Comparison withManta-Notype. The type-assisted

analysis results in more precise indirect call analysis and
DDG, thus helping Manta detect fewer false positives than
Manta-Notype (23.1% vs 52.8%). We also checked whether
the pruning would result in false negatives. Three of the
216 true bugs detected byManta-Notype were incorrectly
pruned away due to incorrect inferred types. Given that de-
velopers typically cannot bear excessive false positives in
practice [12], such a small sacrifice is worthwhile for build-
ing better static bug detection tools on binaries. Finally, we
made an interesting observation while inspecting the time

consumption of Manta-Notype andManta. Despite the ad-
ditional time costs of type inference, the overall analysis time
is reduced. The phenomenon is because inferred types help
stop program slicing on incorrect program paths, avoiding
unnecessary resource consumption.
Vendor-Confirmed Bugs and Assigned CVEs. Based

on our early experiences, directly reporting bugs without a
proof of concept (PoC) often results in them being overlooked
by developers. This is because the firmware is provided as
commercial off-the-shelf binaries without the corresponding
source code, making communication with developers about
the bugs difficult. To facilitate communication, one of the
authors spent a month reverse-engineering the firmware
binaries and successfully developing PoCs to trigger a sig-
nificant proportion of these bugs. However, a few bugs are
deeply entwined within complex code logic, presenting chal-
lenges for manual reproduction. Therefore, we chose not
to pursue further analysis of these bugs’ exploitability. At
the time of writing, 86 bugs were confirmed with 64 CVE
or PSV IDs assigned due to their high-security impacts 4.
The confirmation of bugs spans a broad spectrum of issues,
and more excitingly, we have received official acknowledg-
ment and bug bounty rewards from vendors such as ASUS,
Zyxel, TRENDNet, and Netgear. This result demonstrates
the practicability of Manta.

6.4 Discussion

Soundness. Despite achieving a high recall rate of 97.2% in
the evaluation,Manta’s type inference still has limitations
in inferring all variable types, which is also a common issue
suffered by existing binary type inference methods [26, 45,
57]. The little loss in recall can be attributed to two main
factors.
First, the modeled typing rules cannot always reflect the

correct types of variables due to type-unsafe usage and com-
piler optimization. For example, it is a common programming
4The confirmed bugs list is shown in Table 3 in the supplementary mate-
rial [3]

12

idiom to typecast pointer-type variables and compare them
with specified constant integers to check for error conditions.
Similarly, compiler optimization may introduce bit-level op-
erations on pointer-type variables to ensure proper address
alignment. These special cases would introduce noise and
lead to incorrect type inference results. Second, type hints
may not always exist to reveal the types of variables since
many variable usages are not type-revealing. For example,
passing a variable to unmodeled external functions cannot
provide useful hints to infer the variable’s type. Many vari-
able usages only provide indirect type hints, such as the 𝑐𝑚𝑝

instruction, from which we can only infer that two com-
pared variables are of the same type. Additionally, following
the existing work [26] to achieve both high precision and
scalability,Manta’s underlying points-to analysis could be
unsound due to several treatments specified in § 3, poten-
tially leading to some type hints not being captured. Due to
the aforementioned reasons, it is possible that correct type
hints cannot be captured while incorrect ones are collected,
leading to some variables being inferred as incorrect types.
Application Scope. While we have only shown that

Manta’s type inference is effective for bug detection, the
type analysis could also support other applications. Gener-
ally, the inferred type results could benefit many applications
that do not strongly rely on soundness. For example,Manta
could assist with binary reverse engineering by increasing
decompilation quality or further improve type-based binary
fuzzing [39] by providing more precise types to guide seed
mutation. However, since the inferred type results cannot
guarantee absolute soundness, the system is unsuitable for
applications requiring strong soundness guarantees, such as
control-flow integrity (CFI) or rigorous program verification.

Generalizability.Manta’s hybrid-sensitive binary type
inference approach could be expanded to dynamically typed
languages like Python and JavaScript, which also encounter
a similar precision-recall trade-off problem. For example,
existing type inference methods for dynamically typed lan-
guages [6, 61] have observed that many variable types can-
not be inferred when there are few static constraints avail-
able. To address the problem, they resort to DL-based meth-
ods [6, 35, 61] to infer types for more variables. We believe
Manta’s hybrid-sensitivity static type inference approach
can offer new insights to tackle this problem.
Type Refinement Order. The order of type refinement

could affect type inference results. In our early experiments,
we observed that flow-sensitive analysis tends to be more ag-
gressive and leads to more type loss. Therefore, we designed
our workflow with flow-sensitive refinement placed at the
final stage. For instance, if we have an over-approximated
type introduced by polymorphic functions, context-sensitive
refinement can precisely infer its type, while flow-sensitive
refinementmay result in the total loss of its type if all the type
hints happen to be unreachable on CFG. Similar to the prac-
tice of applying hybrid-sensitivity in alias analysis, where

heavy-weight analysis is placed in a later stage [31, 41], we
chose to place the more aggressive analysis later in Manta
to achieve a better balance between higher precision in type
inference and inferring types for more variables.

7 Related Work

Type Inference. Binary type recovery can be reached by
static analysis [5, 26, 36, 45, 57], dynamic analysis [49, 69],
and machine learning [16, 17, 34, 60, 84]. Manta is the
first tool to leverage rich program structures to refine vari-
able types progressively. As a result, Manta can over-
come the previous limitations of standalone imprecise flow-
insensitive type inference [26, 45, 57]. Compared to dynamic
tools [49, 50, 69], which recover types from concrete exe-
cution traces, Manta offers several advantages as a static
approach, such as independence from concrete inputs and
environmental configurations. While some recent works use
data-driven approach [16, 17, 34, 60, 84] for type inference,
they may suffer from overfitting and predict many incor-
rect results in unseen binaries. Some works have targeted
specific programming languages such as Python [30, 33, 61],
JavaScript [7, 40], and JVM [46, 59].Manta has a flavor of
some of the past efforts [4, 59, 61] based on flow-typing, in
which control flows or even calling contexts are respected.
Also, Manta takes a refinement-based approach to refine
variable types.

Hybrid Program Analysis. In the field of program anal-
ysis, it is a common strategy to organize different analyses
in stages, where an imprecise pre-analysis is performed to
assist with subsequent precise analyses and improve pre-
cision efficiently. Especially for static points-to analysis,
the high-level idea of staged analysis has been explored
in several forms, including bootstrapping [13, 41], sparse
analysis [32, 73], client-driven analysis [31, 70, 71] and prun-
ing [28, 48]. Other works on hybrid or selective context-
sensitive analysis [42, 51, 58, 74] also share a similar idea. The
idea of hybrid analysis has also been applied in dynamic anal-
ysis, in which relatively cheap static analysis is performed
to reduce the dynamic exploration space in fuzzing [37],
testing [21, 24] or instrumentation [14, 56]. However, unlike
these approaches,Manta uses hybrid analysis not for per-
formance but for precision and recall considerations. By ag-
gressively collecting enough type hints through pre-analysis
and progressively refining the types, Manta aims to infer
types for more variables while maintaining high precision.

Static Binary Bug Detection. Many static analysis tools
are specialized for IoT embedded firmwares [15, 18, 19, 63,
64, 81] or are designed to detect specific types of vulnerabil-
ities [77, 83], leaving only a few tools for general-purpose
bug detection [1, 2, 10, 75]. Moreover, none of these tools
attempt to infer the types of variables to increase analysis
precision, as Manta does. Some works utilize symbolic exe-
cution [20, 22, 68, 82] for bug detection, where Inception [22]

13

is the most similar to Manta as it propagates type informa-
tion from code with debug information to low-level code.
However, we do not assume the existence of debug informa-
tion, setting it apart. Finally, some works detect recurring
bugs using binary similarity techniques [23, 27, 80]. In con-
trast,Manta is designed to detect zero-day vulnerabilities
in binaries and thus does not assume any known bugs.

8 Conclusion

We have describedManta, our hybrid-sensitive type infer-
ence for type-assisted binary bug finding. We have shown
thatManta is precise with high recall, effectively assisting
with static bug detection in binary. More excitingly, Manta
has found 86 vendor-confirmed bugs with 64 CVE/PSV IDs
assigned.

Acknowledgment

We thank the reviewers for their valuable comments on this
work. This work is supported by the PRP/004/21FX grant
from the Hong Kong Innovation and Technology Commis-
sion and research grants from Huawei and TCL. Yuandao
Cai is the corresponding author.

A Artifact Appendix

A.1 Abstract

This section describes the details of the artifact evaluation.
The artifact includes a binary analysis tool in the form of
binary to perform type inference and bug detection, the
testing benchmarks, and the scripts to reproduce the results.

A.2 Artifact check-list (meta-information)

• Program: Python; ShellScript; C; C++
• Binary: Manta; RetDec; Z3
• Data set: Coreutils; 14 Open-Source Projects
• Run-time environment: Ubuntu 20.04
• Hardware: x86_64 platform
• Metrics: Precision and Recall of type inference and down-
stream static analysis tasks.
• Output: Number similar to Table 3, Table 4, Figure 9, Figure
11, Figure 12, and Table 2 in supplementary materials.
• Experiments: Executing prepared several shell scripts and
inspecting the output results.
• How much disk space is required (approximately)?:

100 G.
• How much time is needed to prepare workflow (ap-

proximately)?: 1 hour.
• How much time is needed to complete experiments

(approximately)?: 24 hours.
• Publicly available?: No, the tool is used for commercial
purpose5.

5More details can be found on https://www.clearblueinnovations.org

A.3 Description

A.3.1 Hardware dependencies. Our experiments were
performed on a server with two 20-core Intel(R) Xeon
@2.20GHz CPUs and 256 GB DRAM. The evaluators’ en-
vironment should be comparable to or exceed these specifi-
cations to ensure a consistent evaluation.

A.3.2 Data sets. The data sets include coreutils and 14
other open-source projects, all of which are publicly accessi-
ble.

A.4 Experiment workflow

There are seven shell scripts inside the main folder to
reproduce three major experiments described in the paper.
More details can be found in the README.md file.

(E0): [Pre-Process]

Move to the artifact main folder and execute the pre-
processing script:

$./1_decompile_binary.sh
This script will decompile all the binaries into LLVM IRs to
be analyzed.

(E1): [Type Inference] [60 minutes]

Description: The experiment involves running Manta on
test cases to infer the first-layer type of all the function ar-
guments, corresponding to § 6.1 in the paper. The inferred
type results of other type inference tools have already been
included in the artifacts. All of the type inference results
would be compared with the type on source code to deter-
mine precision and recall.
Workflow:
• Execute the script:
$./2_run_type_inference.sh
After roughly 60 minutes, the type inference result of
Manta would be output to corresponding folders.

• Next, execute the script:
$./3_show_type_inference_result.sh
If the previous step succeeds, all the data in Table 3
and Figure 9 will be printed out.

(E2): [Indirect Call Targets Pruning] [60 minutes]

Description: The experiment involves utilizing the type
inference results produced by different tools to prune away
indirect call targets, corresponding to §6.2.1 in the paper. The
analysis result would be compared against that generated
on LLVM IR of test cases compiled from source code to
determine the precision and recall.
Workflow:
• Execute the script:
$./4_run_indirect_call_pruning.sh

14

https://www.clearblueinnovations.org

After roughly 60 minutes, the script would output the
result into corresponding folders.

• Execute the script:
$./5_show_indirect_call_result.sh
If the previous step succeeds, all the data correspond-
ing to Table 4 and Figure 11 will be printed out.

(E3): [Data Dependency Pruning] [16 hours]

Description: The experiment involves utilizing the type
inference results produced by different tools to prune away
infeasible data dependency and assist with program slicing
for bug detection, corresponding to §6.2.2 in the paper. The
analysis result would be compared against that generated
on LLVM IR of test cases compiled from source code to
determine the FP, FN, precision, and recall.
• Execute the script:
$./6_run_bug_detection.sh
The execution time is estimated to be 16 hours, during
which the bug reports on each benchmark assisted
with different type inference tools would be generated
into corresponding folders. During the period, it is
expected that there will be high memory and CPU
usage.

• Execute the script:
$./7_show_bug_detection_result.sh
If the previous step succeeds, the script will print out
all the data corresponding to Figure 12 inside the paper
and Table 2 inside the supplementary material [3].

A.5 Evaluation and expected results

The steps to produce the evaluation results have been dis-
cussed in the previous section. Slight variability is to be
expected due to different experiment environments, and we
recommend running all the experiments in the same envi-
ronment.

A.6 Experiment customization

Users can edit the script and change the execution path to
execute Manta on other binaries.

A.7 Notes

If the printed-out result misses certain benchmarks, it is
expected that a crash occurred during the analysis stage due
to OOM, leading to some empty reports. In such cases, users
need to delete the corresponding empty file manually and
re-execute the corresponding analysis scripts.

References

[1] Cwe-checker. https://github.com/fkie-cat/cwe-checker, 2021. Ac-
cessed November 9, 2021.

[2] QueryX: Symbolic Query on Decompiled Code for Finding Bugs in COTS
Binaries (to appear), San Francisco, CA, May 2023.

[3] Supplementary material. https://github.com/Ychame/MANTA-
Supplement/, 2024.

[4] Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew Might,
Arun Chauhan, and R. Kent Dybvig. Flow-sensitive type recovery in
linear-log time. SIGPLAN Not., 46(10):483–498, oct 2011.

[5] N. S. Agency. Ghidra reverse engineering tool. https://www.nsa.gov/
resources/everyone/ghidra/.

[6] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao.
Typilus: neural type hints. In Proceedings of the 41st ACM SIGPLANCon-
ference on Programming Language Design and Implementation, PLDI
2020, page 91–105, New York, NY, USA, 2020. Association for Comput-
ing Machinery.

[7] Christopher Anderson, Sophia Drossopoulou, and Paola Giannini. To-
wards type inference for javascript. volume 3586, 07 2005.

[8] D.C. Atkinson. Accurate call graph extraction of programs with func-
tion pointers using type signatures. In 11th Asia-Pacific Software
Engineering Conference, pages 326–335, 2004.

[9] Domagoj Babic and Alan J. Hu. Calysto: scalable and precise extended
static checking. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, page 211–220, New York, NY, USA,
2008. Association for Computing Machinery.

[10] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is
not what you execute. ACM Trans. Program. Lang. Syst., 32(6), aug
2010.

[11] George Balatsouras and Yannis Smaragdakis. Structure-sensitive
points-to analysis for c and c++. In Sensors Applications Symposium,
2016.

[12] Al Bessey, Ken Block, Benjamin Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles-Henri Gros, Asya Kamsky, Scott McPeak, and
Dawson R. Engler. A few billion lines of code later: using static analysis
to find bugs in the real world. Commun. ACM, 53(2):66–75, 2010.

[13] Yuandao Cai and Charles Zhang. A cocktail approach to practical call
graph construction. Proc. ACM Program. Lang., 7(OOPSLA2), oct 2023.

[14] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible
security enforcement using dynamic data flow analysis. In Proceedings
of the 15th ACM Conference on Computer and Communications Secu-
rity, CCS ’08, page 39–50, New York, NY, USA, 2008. Association for
Computing Machinery.

[15] Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan, Hong Hu, Ji-
aqi Linghu, Qinsheng Hou, Chao Zhang, Haixin Duan, and Zhi Xue.
Sharing more and checking less: Leveraging common input keywords
to detect bugs in embedded systems. In USENIX Security Symposium,
2021.

[16] Ligeng Chen, Zhongling He, and Bing Mao. Cati: Context-assisted
type inference from stripped binaries. In 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 88–98, 2020.

[17] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Gra-
ham Neubig, and Bogdan Vasilescu. Augmenting decompiler output
with learned variable names and types. In USENIX Security Symposium,
2022.

[18] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun,
and Zhenkai Liang. Dtaint: Detecting the taint-style vulnerability in
embedded device firmware. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 430–441,
2018.

[19] Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hong-
song Zhu, Kejiang Ye, and Limin Sun. Detecting vulnerabilities in
linux-based embedded firmware with sse-based on-demand alias anal-
ysis. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2023, page 360–372, New York,
NY, USA, 2023. Association for Computing Machinery.

15

https://github.com/fkie-cat/cwe-checker
https://github.com/Ychame/MANTA-Supplement/
https://github.com/Ychame/MANTA-Supplement/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/

[20] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e:
a platform for in-vivo multi-path analysis of software systems. In
ASPLOS XVI, 2011.

[21] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, PLDI ’02, page 258–269, New York, NY, USA, 2002.
Association for Computing Machinery.

[22] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. In-
ception: System-wide security testing of real-world embedded systems
software. In USENIX Security Symposium, 2018.

[23] Yaniv David, Nimrod Partush, and Eran Yahav. Firmup: Precise static
detection of common vulnerabilities in firmware. Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018.

[24] David Devecsery, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Optimistic hybrid analysis: Accelerating dy-
namic analysis through predicated static analysis. In Proceedings of
the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’18,
page 348–362, New York, NY, USA, 2018. Association for Computing
Machinery.

[25] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Type-based
alias analysis. In Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation, PLDI ’98, page
106–117, New York, NY, USA, 1998. Association for Computing Ma-
chinery.

[26] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and
Rajeev Barua. Scalable variable and data type detection in a binary
rewriter. SIGPLAN Not., 48(6):51–60, jun 2013.

[27] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla.
discovre: Efficient cross-architecture identification of bugs in binary
code. In Network and Distributed System Security Symposium, 2016.

[28] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel
Geay. Effective typestate verification in the presence of aliasing. In
Proceedings of the 2006 International Symposium on Software Testing
and Analysis, ISSTA ’06, page 133–144, New York, NY, USA, 2006.
Association for Computing Machinery.

[29] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type
qualifiers. SIGPLAN Not., 37(5):1–12, may 2002.

[30] Google. Pytype. https://github.com/google/pytype, accessed 30 May
2023.

[31] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In
Proceedings of the 10th International Conference on Static Analysis,
SAS’03, page 214–236, Berlin, Heidelberg, 2003. Springer-Verlag.

[32] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for
millions of lines of code. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’11, page 289–298, USA, 2011. IEEE Computer Society.

[33] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller.
Maxsmt-based type inference for python 3. In International Conference
on Computer Aided Verification, 2018.

[34] JingxuanHe, Pesho Ivanov, Petar Tsankov, Veselin Raychev, andMartin
Vechev. Debin: Predicting debug information in stripped binaries. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, page 1667–1680, New York, NY,
USA, 2018. Association for Computing Machinery.

[35] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis
Allamanis. Deep learning type inference. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2018,
page 152–162, New York, NY, USA, 2018. Association for Computing
Machinery.

[36] Hex-Rays. The ida pro disassembler and debugger. https://www.hex-
rays.com/products/ida/.

[37] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu,
and Charles Zhang. Beacon: Directed grey-box fuzzing with provable
path pruning. In 2022 IEEE Symposium on Security and Privacy (SP),
pages 36–50, 2022.

[38] P. Matula J. Kˇroustek. Retdec: An open-source machine-code decom-
piler. Presented at Pass the SALT 2018, Lille, FR, July 2018.

[39] Vivek Jain, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. Tiff:
Using input type inference to improve fuzzing. In Proceedings of the
34th Annual Computer Security Applications Conference, ACSAC ’18,
page 505–517, New York, NY, USA, 2018. Association for Computing
Machinery.

[40] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analy-
sis for javascript. In Jens Palsberg and Zhendong Su, editors, Static
Analysis, pages 238–255, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[41] Vineet Kahlon. Bootstrapping: a technique for scalable flow and
context-sensitive pointer alias analysis. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’08, page 249–259, New York, NY, USA, 2008. Association
for Computing Machinery.

[42] George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity
for points-to analysis. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’13,
page 423–434, New York, NY, USA, 2013. Association for Computing
Machinery.

[43] Sun Kim, Cong Sun, Dongrui Zeng, and Gang Tan. Refining indirect
call targets at the binary level. 01 2021.

[44] Sun Hyoung Kim, Dongrui Zeng, Cong Sun, and Gang Tan. Binpointer:
Towards precise, sound, and scalable binary-level pointer analysis.
In Proceedings of the 31st ACM SIGPLAN International Conference on
Compiler Construction, CC 2022, page 169–180, New York, NY, USA,
2022. Association for Computing Machinery.

[45] Jonghyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Prin-
cipled reverse engineering of types in binary programs. In NDSS,
2011.

[46] Xavier Leroy. Java bytecode verification: Algorithms and formaliza-
tions. Journal of Automated Reasoning, 30, 08 2003.

[47] Xavier Leroy and Sandrine Blazy. Formal verification of a c-like mem-
ory model and its uses for verifying program transformations. J.
Autom. Reason., 41(1):1–31, 2008.

[48] Percy Liang and Mayur Naik. Scaling abstraction refinement via prun-
ing. In Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’11, page 590–601,
New York, NY, USA, 2011. Association for Computing Machinery.

[49] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse
engineering of data structures from binary execution. 01 2010.

[50] Ziyi Lin, Jinku Li, Bowen Li, Haoyu Ma, Debin Gao, and Jianfeng
Ma. Typesqueezer: When static recovery of function signatures for
binary executables meets dynamic analysis. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’23, page 2725–2739, New York, NY, USA, 2023. Association for
Computing Machinery.

[51] Jiangchao Liu, Jierui Liu, Peng Di, Diyu Wu, Hengjie Zheng, Alex X.
Liu, and Jingling Xue. Hybrid inlining: A framework for compositional
and context-sensitive static analysis. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, page 114–126, New York, NY, USA, 2023. Association for
Computing Machinery.

[52] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, and Yuyan Bao. Sok: Demys-
tifying binary lifters through the lens of downstream applications. In
2022 IEEE Symposium on Security and Privacy (SP), pages 1100–1119,
2022.

16

https://github.com/google/pytype
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

[53] Kangjie Lu and Hong Hu. Where does it go? refining indirect-call
targets with multi-layer type analysis. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19,
page 1867–1881, New York, NY, USA, 2019. Association for Computing
Machinery.

[54] Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Da-
vide Balzarotti. The convergence of source code and binary vulnera-
bility discovery – a case study. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’22,
page 602–615, New York, NY, USA, 2022. Association for Computing
Machinery.

[55] Dr. Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens
Grossklags, and Claudia Eckert. 𝜏cfi: Type-assisted control flow in-
tegrity for x86-64 binaries. In RAID, 2018.

[56] George C. Necula, Scott McPeak, and Westley Weimer. Ccured: type-
safe retrofitting of legacy code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’02, page 128–139, New York, NY, USA, 2002. Association for
Computing Machinery.

[57] Matt Noonan, Alexey Loginov, and David Cok. Polymorphic type
inference for machine code. SIGPLAN Not., 51(6):27–41, jun 2016.

[58] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and
Kwangkeun Yi. Selective context-sensitivity guided by impact pre-
analysis. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, page
475–484, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[59] David Pearce and James Noble. Implementing a language with flow-
sensitive and structural typing on the jvm. Electr. Notes Theor. Comput.
Sci., 279:47–59, 12 2011.

[60] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen,
Songchen Yao, David Williams-King, Vikas Ummadisetty, Junfeng
Yang, Baishakhi Ray, and Suman Jana. Stateformer: Fine-grained type
recovery from binaries using generative state modeling. In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, page 690–702, New York, NY, USA, 2021. Association
for Computing Machinery.

[61] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang,
and Michael Lyu. Static inference meets deep learning: A hybrid type
inference approach for python. In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, page 2019–2030, New
York, NY, USA, 2022. Association for Computing Machinery.

[62] Prashant Hari Narayan Rajput, Constantine Doumanidis, and Michail
Maniatakos. Icspatch: Automated vulnerability localization and non-
intrusive hotpatching in industrial control systems using data depen-
dence graphs. volume abs/2212.04229, 2023.

[63] Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, An-
tonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Krügel,
and Giovanni Vigna. Bootstomp: On the security of bootloaders in
mobile devices. In USENIX Security Symposium, 2017.

[64] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea
Continella, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Karonte: Detecting insecure multi-binary interactions in em-
bedded firmware. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1544–1561, 2020.

[65] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedu-
ral dataflow analysis via graph reachability. In Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’95, page 49–61, New York, NY, USA, 1995. Association
for Computing Machinery.

[66] Semmle. Codeql. https://securitylab.github.com/tools/codeql, accessed
30 May 2023.

[67] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and
Charles Zhang. Pinpoint: Fast and precise sparse value flow analysis
for million lines of code. SIGPLAN Not., 53(4):693–706, jun 2018.

[68] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. Sok: (state of) the
art of war: Offensive techniques in binary analysis. pages 138–157, 05
2016.

[69] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dy-
namic excavator for reverse engineering data structures. In Network
and Distributed System Security Symposium, 2011.

[70] Manu Sridharan and Rastislav Bodík. Refinement-based context-
sensitive points-to analysis for java. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’06, page 387–400, New York, NY, USA, 2006. Association
for Computing Machinery.

[71] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík.
Demand-driven points-to analysis for java. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA ’05, page 59–76, New
York, NY, USA, 2005. Association for Computing Machinery.

[72] Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, page 265–266, New York, NY, USA,
2016. Association for Computing Machinery.

[73] Yulei Sui and Jingling Xue. Value-flow-based demand-driven pointer
analysis for c and c++. IEEE Transactions on Software Engineering,
46(8):812–835, 2020.

[74] Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis.
Making pointer analysis more precise by unleashing the power of
selective context sensitivity. Proc. ACM Program. Lang., 5(OOPSLA),
oct 2021.

[75] Jayakrishna Vadayath, Moritz Eckert, Kyle Zeng, Nicolaas Weideman,
Gokulkrishna Praveen Menon, Yanick Fratantonio, Davide Balzarotti,
Doup Adam, Tiffany Bao, Ruoyu Wang, Christophe Hauser, and Yan
Shoshitaishvili. Arbiter: Bridging the static and dynamic divide in
vulnerability discovery on binary programs. In Usenix, editor, USENIX
2022, 31st USENIX Security Symposium, August 10&#8211;12, 2022,
Boston, MA, USA, Boston, 2022. Copyright Usenix. Personal use of
this material is permitted. The definitive version of this paper was
published in USENIX 2022, 31st USENIX Security Symposium, August
12, 2022, Boston, MA, USA and is available at :.

[76] Victor van der Veen, Enes Göktas, Moritz Contag, Andre Pawoloski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athana-
sopoulos, and Cristiano Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 934–953, 2016.

[77] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. Intscope: Auto-
matically detecting integer overflow vulnerability in x86 binary using
symbolic execution. 01 2009.

[78] Robert P.Wilson andMonica S. Lam. Efficient context-sensitive pointer
analysis for c programs. In Proceedings of the ACM SIGPLAN 1995 Con-
ference on Programming Language Design and Implementation, PLDI
’95, page 1–12, New York, NY, USA, 1995. Association for Computing
Machinery.

[79] Yichen Xie and Alexander Aiken. Scalable error detection using
boolean satisfiability. In Jens Palsberg and Martín Abadi, editors,
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2005, Long Beach, California,
USA, January 12-14, 2005, pages 351–363. ACM, 2005.

[80] Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu.
Patch based vulnerabilitymatching for binary programs. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2020, page 376–387, New York, NY, USA, 2020.

17

https://securitylab.github.com/tools/codeql

Association for Computing Machinery.
[81] Jiawei Yin, Menghao Li, Wei Wu, Dandan Sun, Jianhua Zhou, Wei Huo,

and Jingling Xue. Finding smm privilege-escalation vulnerabilities
in uefi firmware with protocol-centric static analysis. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1623–1637, 2022.

[82] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide Balzarotti.
Avatar: A framework to support dynamic security analysis of embed-
ded systems’ firmwares. 02 2014.

[83] Yang Zhang, Xiaoshan Sun, Yi Deng, Liang Cheng, Shuke Zeng, Yu Fu,
and Dengguo Feng. Improving accuracy of static integer overflow
detection in binary. 11 2015.

[84] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee,
Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. Osprey: Recovery
of variable and data structure via probabilistic analysis for stripped
binary. In 2021 IEEE Symposium on Security and Privacy (SP), pages
813–832, 2021.

18

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Previous Limitations on Type Inference.
	2.2 Motivating Example
	2.3 Our Approach

	3 Preliminary Definitions
	4 Hybrid Sensitive Type Inference
	4.1 Global Flow-Insensitive Type Inference
	4.2 Type Refinements

	5 Type-Assisted Static Analysis
	5.1 Type-Based Indirect Call Analysis
	5.2 Infeasible Data Dependency Pruning
	5.3 Source-Sink DDG Traversal Bug Detection

	6 Evaluation
	6.1 Comparison with Existing Type Inference
	6.2 Downstream Evaluation on Static Analysis
	6.3 Effectiveness of Real-World Bug Detection
	6.4 Discussion

	7 Related Work
	8 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Experiment workflow
	A.5 Evaluation and expected results
	A.6 Experiment customization
	A.7 Notes

	References

