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Parallel fuzzing, which utilizes multicore computers to accelerate the fuzzing process, has been widely used in
industrial-scale software defect detection. However, specifying efficient parallel fuzzing strategies for programs
with different characteristics is challenging due to the difficulty of reasoning about fuzzing runtime statically.
Existing efforts still use pre-defined tactics for various programs, resulting in suboptimal performance.

In this paper, we propose Kraken, a new program-adaptive parallel fuzzer that improves fuzzing efficiency
through dynamic strategy optimization. The key insight is that the inefficiency in parallel fuzzing can be
observed during runtime through various feedbacks, such as code coverage changes, which allows us to adjust
the adopted strategy to avoid inefficient path searching, thus gradually approximating the optimal policy.
Based on the above insight, our key idea is to view the task of finding the optimal strategy as an optimization
problem and gradually approach the best program-specific strategy on the fly by maximizing certain objective
functions. We have implemented Kraken in C/C++ and evaluated it on 19 real-world programs against 8
state-of-the-art parallel fuzzers. Experimental results show that Kraken can achieve 54.7% more code coverage
and find 70.2% more bugs in the given time. Moreover, Kraken has found 192 bugs in 37 popular open-source
projects, and 119 of them are assigned with CVE IDs.
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1 Introduction

Fuzzing is one of the most effective ways of detecting vulnerabilities in software systems. It works
by feeding a large number of inputs to the target program to trigger unintended behaviors such
as crashes, hangs, or assertion failures. Traditional techniques usually focus on maximizing code
coverage or the number of detected bugs in a single fuzzer by prioritizing inputs [8, 9, 26, 50],
controlled input generation [61, 70], combining with symbolic execution [17, 38, 79], and optimized
instrumentation [15, 54, 82].

Despite numerous advances, most existing fuzzers still require more than 24 hours to thoroughly
test the target programs to achieve satisfactory code coverage or bug detection results [7, 32, 42, 64].
Recently, as cloud-based computing andmulticore computers have becomemore andmore prevalent,
parallel fuzzing [28, 29, 47, 75, 77, 83] has emerged as a new direction for improving fuzzing efficiency.
It works by running multiple fuzzers simultaneously with information sharing between instances.
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(a) libpng (b) libtiff

Fig. 1. Accumulated edge coverage of fuzzing two

Magma [32] programs with a different number of

CPU cores for 3 hours.
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Fig. 2. Average contribution ratio of each instance

to the global code coverage of fuzzing programs

used in § 5.2 with AFL++ [3] for 3 hours.

Parallel fuzzing has great potential to speed up the testing process by reducing the required fuzzing
time from several days to several hours while still achieving similar code coverage [7, 83].
However, we found that existing parallel fuzzers still suffer from a fundamental problem: they

are not adaptive to programs with different characteristics because their fuzzing strategies are
usually statically determined and remain the same across various projects. Figure 1 shows the
edge coverage of using existing parallel fuzzers to test two Magma [32] programs with different
numbers of CPU cores for 3 hours. As shown in the figure, existing parallel fuzzers still have
unstable performance across different projects, i.e., performing well on some programs while badly
on others. We mainly observe two root causes.

First, more computation cores do not necessarily result in better or worse performance. Intuitively,
given the same amount of time, the code coverage should increase monotonically with the number
of computation cores used. However, we found that such intuition may not hold in real-world cases.
All existing parallel fuzzers still use a pre-defined number of CPU cores (parallelism degree) for
fuzzing, making their performances vary across projects. For example, perfAFL [77] performs the
best with 30 cores in Figure 1, while µFuzz [16] reaches the best performance at 40 cores. However,
for libpng, µFuzz performs the best with 20 or 40 cores.

Second, the same input selection strategy does not consistently perform well. Some fuzzers [1, 77]
let each instance adopt the same input selection strategy as the single-node fuzzing. They evaluate all
the inputs and “intensify” the most promising ones for mutation, meaning that all instances tend to
fuzz a similar set of inputs. Several recent approaches [47, 75] have designed new task distribution
strategies that focus on maximizing search diversity in different instances. They partition the
program into fragments, such as paths [47, 75] and functions [62], and let instances focus on inputs
that cover different code parts. However, as illustrated in Figure 1, merely performing diversified or
intensified input selection still could not consistently achieve good results. For example, perfAFL
outperforms AFL-EDGE when fuzzing libpng while AFL-EDGE beats perfAFL on libtiff.

In this paper, we propose Kraken, a new program-adaptive parallel fuzzer that improves fuzzing
efficiency through dynamic strategy optimization. Our key insight to solve the above problems is that
the inefficiency in parallel fuzzing can be observed through various runtime feedbacks such as code
coverage changes, which allows us to dynamically adjust the adopted strategy to avoid inefficient
path searching, thus gradually approximating the optimal strategy. Since precisely reasoning about
fuzzing runtime behaviors is extremely difficult, it is impossible to determine the real “optimal
strategy”. Instead, following numerous efforts on solving undecidable problems [8, 11, 50], our key
idea is to view the problem of finding optimal strategy as an optimization problem, and gradually
approach the best program-specific strategy on the fly by maximizing certain objective functions.
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Specifically, Kraken features two algorithms to overcome the two limitations above, i.e., subop-
timal parallelism degree and ineffective input selection. Kraken leverages the runtime feedback,
such as coverage changes, to measure the “fitness” of the current strategy and dynamically adjusts
it to achieve better ones. First, to find the optimal number of parallelized fuzzers, Kraken mod-
els the parallel fuzzing process as a multinomial-Dirichlet compound distribution and leverages
runtime statistical data to update its hyper-parameters constantly. The probability model is used
to estimate the fuzzing efficiency, and Kraken uses a simulated annealing-inspired algorithm to
activate/deactivate fuzzing instances to maximize the efficiency dynamically. Second, to balance
the intensification and diversification of the input selection in sub-instances, Kraken partitions
the program flow graph into a compound hierarchical representation and instruments the target
binary to obtain runtime information about search diversity in sub-instances. By evaluating how
the current strategy affects the coverage results of already selected inputs, Kraken adopts a meta-
heuristic, the ant colony optimization (ACO) algorithm, to dynamically adjust the diversity degree
of the input selection in sub-instances.
We evaluated Kraken on 19 real-world programs against 8 state-of-the-art parallel fuzzers.

Experimental results show that Kraken achieves 54.7% more code coverage and finds 70.2% more
bugs on average in the given time. Moreover, Kraken has found 192 bugs in 37 popular open-source
projects, and 119 of them are assigned with CVE IDs. We will open source Kraken to facilitate
future research and bug detection. In summary, this paper makes the following contributions:

● We propose a new program-adaptive parallel fuzzer Kraken together with two new algo-
rithms to automatically optimize the fuzzing strategy during runtime.
● We conduct large-scale experiments to show that Kraken has better performance than
existing works in terms of both code coverage and bug detection.
● We have found 192 bugs in 37 popular open-source projects with 119 CVE IDs assigned.
● We will open source Kraken to facilitate future research and bug detection.

2 Background and Motivation

In this section, we first introduce how state-of-the-art parallel fuzzing approaches work (§ 2.1). Then,
we illustrate the limitations of existing techniques (§ 2.2). Finally, we summarize the challenges we
attempt to resolve and present our solutions (§ 2.3).

2.1 Existing Efforts

Parallel fuzzing [29, 47, 75, 77] expedites the fuzzing process by running multiple fuzzer instances
simultaneously on multi-core machines.
Naive parallel mode. Most existing single-node fuzzers [1, 9, 26, 71, 76] such as AFL natively
support a parallel mode, which runsmultiple instances of the same fuzzer concurrently and performs
synchronization between instances periodically to exchange local findings.
Reducing overhead. Some approaches focus on reducing the execution or synchronization over-
head to speed up parallel fuzzing. For example, perfAFL [77] designs new system primitives to solve
performance bottlenecks of parallel fuzzing. They replace the fork() system call with a lightweight
snapshot() and substitute the disk file system with the in-memory file system. µFuzz [16] breaks
the serial fuzzing loop into four self-contained microservices to address the CPU cycle-wasting
issue and partitions the fuzzing state among workers to avoid synchronization delay.
Principled task distribution. Some methods [28, 47, 62, 75] propose principled task distribution
strategies to reduce duplicated path searching in parallelized instances. Since the naive parallel
mode lets sub-instances explore program paths independently with similar strategies, they likely
perform redundant or repeated path searches, causing performance degradation. To solve this
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problem, PAFL [47] divides the bitmap into intervals and makes different fuzzer instances only focus
on specific areas. AFLTeam [62] captures the program call graph dynamically and divides it into
sub-graphs evenly with graph segmentation algorithms, and these sub-graphs serve as guidance
for input selection or mutation in sub-instances. AFL-EDGE [75] designs a greedy algorithm on
the program control-flow graph to divide already queued inputs into mutually exclusive while
similarly-weighted sub-sets, which will be assigned back to fuzzing instances as guidance for input
mutation. glibFuzzer [28] divides the global corpus into groups based on multiple features such
as the seed size, execution speed, and the degree of difference in the coverage metric. Then, it
randomly selects multiple seeds from the groups as the local corpora for sub-instances.
Collaborative fuzzing. Other approaches run different combinations of fuzzers instead of indi-
vidual ones to improve the parallel fuzzing efficiency, which is also called collaborative fuzzing [13,
24, 29, 57]. EnFuzz [13] ensembles a number of diverse fuzzers by self-defined diversity heuristics.
Cupid [29] generalizes the selection intuition and proposes an automated data-driven selection
method. autofz [24] proposes an automated meta-fuzzer to make fine-grained adjustments to the
resource allocation of base fuzzers. CollabFuzz [57] proposes a framework for scheduling test cases
among different fuzzers by centralized analysis.

2.2 Limitations of Existing Techniques

Most existing parallel fuzzers still suffer from a fundamental problem: they are not adaptive to
programs with different characteristics because their fuzzing strategy is statically determined and
remains the same across various projects. Using a fixed strategy for all programs could result in
unstable performance, i.e., performing well on some programs while badly on others (Figure 1).
Fuzzing can be viewed as a random search process [10, 49], where the search space is the

whole input space and the solutions are inputs that can cover new program code. Although the
search space is infinite for any program, the solution space could vary across programs. Similarly,
parallel fuzzing can also be viewed as a parallel random search process on the input space. There
are two essential aspects of the parallel random search process: the number of simultaneous
searches and the search direction, which corresponds to the parallelism degree (the number of
parallelized fuzzers) and the input selection method (which inputs to select in sub-instances) in
parallel fuzzing. We use Figure 3 to illustrate how these two aspects influence the fuzzing efficiency
on different programs.
Aspect 1: parallelism degree. First, for different programs, the fuzzing efficiency varies across the

number of parallelized instances. Adding more CPU cores for fuzzing could increase the probability
of finding solutions; however, if the solution space is narrow, newly found solutions could collide,
reducing the overall efficiency. For example, in Figure 3a, the square and triangle find conflict
solutions and are both synchronized with the circle instance, causing redundancy and thus affecting
the overall efficiency. On the contrary, using more cores has positive effects if the solution space
is large. For example, in Figure 3b, all four instances can find different solutions; therefore, the
efficiency can be improved.
Limitations of existing efforts. All existing parallel fuzzers discussed in § 2.1 still assume a
configuration that specifies the number of available CPU cores, and will exhaustively use all cores
for fuzzing, which makes them unable to adapt to various programs. As illustrated in Figure 1, for
the libtiff project, perfAFL [77] performs best with 30 cores, while µFuzz [16] reaches the best
performance at 40 cores. However, for libpng project, µFuzz [16] performs best with 20 or 40 cores.
Aspect 2: input selection. Second, the input selection method should vary across different programs.
Intuitively, if the solution space is wide, it is beneficial to perform more diversified searches in
different directions. However, if the search space is narrow, the best strategy would be to intensify
the search in the same direction for deeper solutions. For example, consider different solution
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(a) Conflict solutions re-

sult in inefficiency.

(b) Discrete solutions ad-

vocate more instances.

(c) Narrow solution space

needs intensification.

(d) Wide solution space

needs diversification.

Fig. 3. Dots with different shapes are instances. The dotted and solid lines are the search/synchronization.

spaces in Figure 3c and Figure 3d; a narrow but deep solution space needs intensification, while a
wide solution space needs diversification.
Limitations of existing efforts. As discussed in § 2.1, naive parallel mode [1, 9, 26, 71, 76] runs
multiple instances of the same fuzzer, which always “intensifies” the most promising inputs for
mutation, therefore, all instances tend to focus on fuzzing a similar set of inputs. Approaches [28,
47, 62, 75] that feature principled task distribution strategies focus on maximizing search diversity
in different instances. Those methods, while innovative, have two significant drawbacks. On the
one hand, they primarily focus on reducing task conflict [28, 46], overlooking the potential benefits
of repeated searching. On the other hand, they divide the program based on paths [28, 47] or
functions [62], which could be either too fine-grained or coarse-grained.

Example 1. Consider the control-flow graph (CFG) in Figure 4, if one input covers the path P1 =
∐︀A,C,E, I , J ,K ,M̃︀ and the other one covers the path P2 = ∐︀A,C,E, I , J ,L,M̃︀, although P1 and P2 are
highly related (only K and L are different), they are still marked as different tasks, which could result

in possible solution conflicts in different instances because P1 is easy to reach from P2 and vice versa.
However, if the program is partitioned based on functions, then inputs that cover any blocks inside the

CFG will not be distinguishable.

Since base fuzzers that have different properties and advantages can complement each other
on different programs, collaborative fuzzing [13, 24, 29, 57] could achieve program adaption to
some extent. However, existing collaborative fuzzers still suffer from two major drawbacks. First,
they only realize a coarse-grained program-adaptive method since the number of available fuzzing
strategies is limited by the number of adopted base fuzzers. Second, they still assume a fixed number
of CPU cores and try to distribute resources among the base fuzzers, hence overlooking possible
inefficiency caused by suboptimal parallelism degree.
We also studied the average contribution of instances to the global code coverage of fuzzing

programs used in § 5.2 with AFL++ using 10, 20, 30, and 40 CPUs for 3 hours. Figure 2 shows the
results, and we draw two conclusions. First, Using more CPUs increases the chance of solution
conflicts and decreases global coverage. As shown in Figure 2, nearly all projects show a monotonic
decrease trend of average contribution ratio when more CPUs are adopted. For example, in libpng,
the average contribution ratios are 32.2%, 26%, 15.8%, and 15.6% when using 10, 20, 30 and 40
cores, respectively. Therefore, even using 30 cores achieves higher local coverage (edges covered by
sub-instances), most of them conflict and do not contribute to global coverage, causing the decrease
in global coverage from 20-core to 30-core in Figure 1a. Second, the probability of covering new
program code increases when more CPUs are used, causing the see-sawing pattern. For example,
in libpng, the average contribution ratio of 40-core is close to that of 30-core (15.6% vs. 15.8%), and
40-core has higher local coverage. Therefore, 40-core reaches higher global coverage in Figure 1a.
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However, it is challenging to manually specify suitable parallel fuzzing strategies for different
programs in advance because it is hard to statically determine the solution space, which could only
be revealed during the fuzzing process.

2.3 Our Technique

Insight. Our key insight to solve limitations of existing efforts is that the inefficiency in parallel
fuzzing can be observed during runtime through various feedbacks such as code coverage changes,
which allows us to dynamically adjust the adopted strategy to avoid inefficient path searching, thus
gradually approximating the optimal strategy.

For example, suppose the initial input selection strategy for the program in Figure 3c guides the
search direction to be diverse. Since the solution space is narrow, the inefficiency can be observed in
the search results, which can be improved by changing the search directions to be more intensified.
However, there are two challenges for efficiently approximating the optimal strategy.
Challenge 1: How to efficiently evaluate the current strategy? Simply evaluating code cov-
erage changes at a certain moment is not appropriate because the coverage increase is not at a
constant speed throughout the fuzzing process. Therefore, a bad strategy could also result in a
seeming coverage increase.
Challenge 2: How to efficiently adjust the fuzzing strategy to obtain the optimal one? The
granularity and frequency of the adjustment could significantly affect the final results. For example,
although Figure 3d needs search diversity, if search directions become so diverse that they go out
of the solution space, the fuzzing results could even get worse.
This paper proposes Kraken, a new parallel fuzzer that achieves better program adaption by

optimizing the two aspects of parallel fuzzing with two new algorithms.
Algorithm 1: dynamic parallelism adjustment (§ 3.2). We propose a dynamic parallelism
adjustment algorithm for optimizing the number of CPU cores used. To tackle challenge 1, it
describes the overall fuzzing process with a mathematical model and leverages the Bayesian
method [33] to estimate its parameters with runtime statistical data. To tackle challenge 2, the
algorithm leverages the estimation result to compute a single objective function and tries to
maximize it with a simulated annealing-inspired process [8].
Algorithm 2: ACO-based dynamic input selection (§ 3.3). Our second algorithm aims to opti-
mize the input selection. To tackle challenge 1, the algorithm measures how the search diversity
affects the fuzzing outcomes of selected inputs. The algorithm partitions the program into regions,
a compound hierarchical representation of the program [41]. For example, in Figure 4, the CFG can
be split into R1, R2, and R3 based on branches. By instrumenting the program, Kraken can obtain
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region coverage information during runtime. Various feedbacks of fuzzed inputs, such as region
and branch coverage, are aggregated to measure the outcomes of inputs. To tackle challenge
2, the algorithm adopts the ant colony optimization (ACO) [22] to adjust the input selection for
maximizing code coverage.

3 Design

In this section, we first introduce Kraken’s workflow (§ 3.1). We then detail our methods for
dynamic parallelism adjustment (§ 3.2) and ACO-based input selection (§ 3.3).

3.1 Overview of Kraken

Figure 5 shows the workflow of Kraken. It takes the project code, initial seed inputs, and the
maximum number of allowed computation cores as inputs.

Kraken contains two kinds of fuzzing instances: the manager and the worker node. Both of
them implement essential components for grey-box fuzzing, such as input mutation, feedback
collection, and crash saving. There is only one manager node, and all the remaining ones are worker
nodes that can only be launched by the manager node. The manager node synchronizes inputs
from all worker nodes, while workers only fetch inputs from the manager. The parallel fuzzing
process of Kraken is mainly controlled by two components that leverage different optimization
algorithms for searching optimal strategy: parallelism degree adjustment (§ 3.2) and ACO-based
input selection (§ 3.3).

Those optimization algorithms are well-suited for program-adaptive strategy searching in parallel
fuzzing because of their strengths in handling uncertainty, optimizing exploration-exploitation
trade-offs, and leveraging data-driven learning [50, 59, 80].
Parallelism degree adjustment. Kraken only launches the manager node and one worker node
at the beginning. During runtime, the manager node periodically collects statistical data from
workers and iteratively updates a mathematical model that represents the fuzzing efficiency. Based
on estimation results, the manager node leverages a simulated annealing-inspired algorithm to
activate/deactivate workers to maximize an objective function.
ACO-based input selection. Apart from the regular coverage instrumentation, Kraken performs
an additional region analysis and instruments the binaries to get region coverage at runtime to
measure the path search diversity. Each node (manager and worker) contains a separate ACO-based
decision engine and generates new inputs independently according to runtime feedback.

3.2 Parallelism Degree Adjustment

The first part of Kraken’s technique aims to find the optimal parallelism degree for parallel fuzzing.
Our key idea is to use the Bayesian method [33] to estimate the fuzzing efficiency with runtime
statistical data and dynamically adjust the number of instances for maximizing the overall efficiency.
The algorithm uses a mathematical model to describe the parallel fuzzing process and leverages
the runtime feedback to estimate the efficiency under a specific parallelism degree. Then, it uses a
simulated annealing-inspired process to dynamically activate/deactivate instances to maximize the
efficiency. Therefore, Kraken could try different parallelism degrees during the fuzzing process
and select the most promising one.

3.2.1 Efficiency Estimation. There exists a set of underlying parameters that control the output of
the fuzzing process [7, 82]. For single-node fuzzing, each input only has two outcomes: finding new
paths or examining old ones. Since parallel fuzzing could generate multiple inputs simultaneously,
apart from the above two outcomes, inputs could also find new paths but collide with others.
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We use a mathematical model to describe the parallel fuzzing process. Let pnew , pold , and pcoll
be the probabilities of one input finding new edges, not finding new edges, and finding new edges
but colliding with other inputs. Then, the number of paths found by parallel fuzzer is assumed to
be independently distributed and can be modeled by a multinomial distribution with parameter
vector p⃗ = {pnew ,pold ,pcoll} and parameter K = 3 as follows:

p(n⃗⋃︀p⃗,N ) = (N
n⃗
)

K

∏
k=1

pn
(k)

k ≜Mult(n⃗⋃︀p⃗,N ) (1)

with the multinomial coefficient (Nn⃗ ) =
N !

∏k n(k)!
. Further, the elements of p⃗ and n⃗ follow the

constraints ∑K
k=1 pk = 1 and ∑

K
k=1 n

(k) = N . The multinomial distribution governs the multivariate
variable n⃗ with elements n(k), which counts the occurrences of the event k within N total trials.
The multinomial coefficient counts the number of configurations of individual trials that lead to
the total. For this model, if we can estimate p⃗, we can estimate the fuzzing process.
We employ the widely adopted Bayesian likelihood estimation [33] to estimate p⃗ from a set

of observed data D. Specifically, D is the set of occurrence counts of three outcomes during the
parallel fuzzing process: D = {dnew ,dold ,dcoll}.

For the parameter p⃗ of themultinomial distribution, the conjugate prior is theDirichlet distribution,
which generalizes the beta distribution from 2 to K dimensions:

Dir(p⃗⋃︀α⃗) ≜ Γ(∑K
k=1 αk)

∏K Γ(αk)

K

∏
k=1

pαk−1k (2)

with parameters vector α⃗ that controls the shape of the probability mass function, which can be
estimated from the training set of count vectors D. The likelihood is [33]:

p(D⋃︀α⃗) =∏
i
p(xi ⋃︀α⃗) =∏

i
( Γ(∑K

k=1 αk)
Γ(ni +∑K

k=1 αk)
∏
k

Γ(nik + αk)
Γ(αk)

) (3)

The gradient of the log-likelihood is [33]:

дk =
dlogp(D⋃︀α⃗)

dαk
= ∑

i
Ψ(∑

k
αk) − Ψ(ni +∑

k
αk) + Ψ(nik + αk) − Ψ(αk) (4)

Its maximum is obtained using the fixed-point iteration [53]:

αnewk = αk
∑i Ψ(nik + αk) − Ψ(αk)

∑i Ψ(ni +∑k αk) − Ψ(∑k αk)
(5)

The value of p⃗, which is the probability of finding new paths (pnew ), covering old paths (pold )
and colliding with other new paths (pcoll ), can be computed as [33]:

pi =
αi + di − 1

∑k
j=1(α j + dj − 1)

(6)

where i corresponds to the three outcomes of each input, i.e., i = {new,old,coll}. αi is from α⃗
and di is from D.

Example 2. Initially, α⃗ = {1.0, 1.0, 1.0}. Suppose at time t , there are 10,000 inputs generated in

total, and 5,000 of them trigger new code coverage while 1000 of them increase the global code coverage.

Then, the observed data D is constructed as D = {1, 000, 4, 000, 5, 000}. Then, we could update α⃗ with
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D using Equation 3 - Equation 5, and α⃗ = {0.765361, 1.65205, 1.89488}. Further applying Equation 6,

p⃗ = {0.0999634, 0.400013, 0.500024}

3.2.2 Parallelism Adjustment. Algorithm 1 presents the parallelism adjustment process. At a high
level, it uses a simulated annealing [8] inspired process to adjust the number of used CPUs to
maximize the objective function ft that represents the fuzzing efficiency.

Example 3. Figure 6 illustrates the simulated annealing process, where the x-axis is the number of

used cores and the y-axis is the value of the objective function. As illustrated in the figure, the algorithm

can gradually approach the maximum value of the objective function ft . At the same time, it prevents

Kraken from falling into a local best result and allows it to find the global optimum result.

More specifically, at the beginning, Kraken only launches the manager node and one worker
node. To let Kraken make sufficient progress, the manager node invokes the AddOrKillDecision
function inside Algorithm 1 for parallelism adjustment after each round of fuzzing on one input,
i.e., mutating and running the input multiple times [9]. It first performs a round of synchronization
with all workers to collect newly found inputs that can increase the global code coverage (Line 3).
Moreover, the manager node counts the number of inputs that fall into the three outcomes: finding
new coverage, covering old paths, and colliding with other inputs on new paths. Then, it constructs
a set of observed values D for efficiency estimation (Line 4).
Line 7 - Line 10 illustrates the fixed-point computation for updating the parameters α⃗c for the

current number of running instances c . To ensure its convergence, we limit the maximum number
of iterations to a configurable value MaxIter (20 in our implementation). If the total changes in
parameter α⃗c is less than the converge criteria ε (0.001 in our implementation), we also break the
iteration. The value of p⃗c , i.e., the probability of finding new paths (pnew ), covering old paths (pold )
and colliding with other new paths (pcoll ), can be computed with Equation 6 given α⃗c (Line 12).

Leveraging the obtained p⃗c , Kraken computes the objective function ft tomeasure the “fitness” of
the current strategy. The objective function ft is designed such that the code coverage is maximized
while the path collision is minimized and is defined as follows:

ft =
pcnew(t) + 1
pccoll (t) + 1

×
c

∑
i=0

avдSpeedi(t) (7)

where pcnew(t) (pccoll (t)) represents the probability of finding new paths (colliding with other
inputs) for c CPUs at time t . At time t , the number of new paths found by the parallel fuzzer with c
cores can be computed as pnew ×∑c

i=0 avдSpeedi(t), which is the probability of finding new paths
times the number of newly generated inputs at time t by all instances. Therefore, we add the two
probability values by one to normalize them and further times their fraction with the sum of the
fuzzing speed of all instances (avдSpeedi(t)).
The parallelism manager dynamically adjusts the number of worker nodes by leveraging the

result of the efficiency estimation discussed above. Specifically, at time t , suppose we have obtained
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Algorithm 1: Dynamic Parallelism Adjustment
Input: List of running worker nodes Lw , and the number of running instances c
Output :Decision of adding or killing sub-instances

1 Function AddOrKillDecision():
2 foreachw in Lw do ▷ synchronize all workers

3 Sync(w)
4 D = {cnew ,cold ,ccoll} ← дetObs() ▷ runtime data

5 if α⃗c is empty then
6 α⃗c ← {1.0, 1.0, 1.0}
7 iter ← 0; α⃗ ′c ← α⃗c
8 while iter ≤ MaxIter and abs(∑ α⃗c −∑ α⃗ ′c) > ε do
9 α⃗ ′ ← α⃗

10 DirMulEstimation(α⃗c ,D) ▷ estimation

11 iter ← iter + 1
12 p⃗c = pnew ,pold ,pcoll ← DirMulMode(α⃗c) ▷ prob

13 Vft ← ft (p⃗c ,Lw ) ▷ compute objective function

14 if Vft ≥max(ft ) then
15 return ADD

16 else
17 q ← random(0, 1)
18 d ←max(ft ) −min(ft ) ▷ normalize

19 n ←max(max(ft ) − ft , ft −min(ft ))
20 if c < cmax(ft ) then
21 return q < n

d ? ADD : KILL

22 else
23 return q < n

d ? KILL : ADD

the probability vector p⃗c(t). Kraken uses a simulated annealing [8] inspired process to maximize
ft (Line 13 - Line 23 in Algorithm 1). If the current parallelism configuration c increases ft , the
manager node adds another worker. Otherwise, it adds or kills a worker based on probability
proportional to the value of ft . For example, the rule for adding a new instance is as follows:

add =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

max(max(ft ) − ft , ft −min(ft ))
max(ft ) −min(ft )

, if c < cmax(ft )

min(max(ft ) − ft , ft −min(ft ))
max(ft ) −min(ft )

, otherwise

where ft is the current value of the objective function.max(ft ) is the maximum value of ft so far.
c is the current number of used CPU cores. cmax(ft ) is the number of CPU cores whose objective
function is evaluated tomax(ft ).

As illustrated in Algorithm 1, if the current number of running CPU cores c is smaller than the
number of CPU cores cmax(ft ) that achieves the maximum ft so far, Kraken gives more probability
to adding another worker (Line 21). Otherwise, it gives more probability of killing an existing
worker (Line 23). The above process allows us to gradually approach the global optimal value
of ft and c . When the manager decides to kill one instance, it kills the last one added. The basic
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insight here is that the instance that runs with the shortest time is more likely to explore shallow
paths, therefore, killing the last instance has the least chance of missing deeper new paths. When it
decides to add a new worker, it starts a fresh instance with an input queue that is constructed from
the manager input queue, thus preventing it from re-exploring already covered shallow paths.

3.3 ACO-based Input Selection

The second part of the design aims to optimize the input selection. The key idea is to measure
the search diversity in sub-instances and evaluate how the current input selection strategy affects
the coverage of selected inputs. By regulating the input selection with an effective meta-heuristic,
the Ant Colony Optimization (ACO) [20], Kraken can gradually approach the optimal strategy.
Unlike previous work, which merely maximizes diversification or intensification, our method lets
sub-instances decide searching directions based on the code coverage results of already selected
inputs. Therefore, the input selection purely depends on the actual runtime results instead of
pre-defined rules.

3.3.1 Diversity Measurement. To measure the search diversity in sub-instances, existing work
examines whether inputs cover different paths [28, 47] or functions [62]. However, as shown in
§ 2.2, existing measurement is ineffective since their program partition schema could be either
too fine-grained or coarse-grained. Different from them, Kraken partitions each function in the
target program into single-entry single-exit (SESE) regions [12, 41, 45], which form a hierarchical
representation of the control structure of a program that allows us to exploit the sparsity of the
flow graphs. We now formally define the SESE region:

Definition 1. Let G = (N ,E, ρ) be a flow graph, where N is a set of nodes, E ∈ N × N is a set

of directed edges, and ρ is the entry node. Given that N1 ⊆ N , E1 ⊆ E, and ρ1,e1 ∈ N , a connected

subgraph, R = (N1,E1, ρ1), is called a SESE region of G with entry node ρ1 and exit node e1 if and
only if on every path (n1, ...,nk), where n1 = ρ and nk ∈ N1, there is some i < j ≤ k such that: ni = ρ1,
nj = e1, ni+1, ...,nj ∈ N1, and (ni ,ni+1), (ni+1,ni+2), ..., (nk−1,nk) ∈ E1.

The above definition ensures that every path from the region entry node ρ1 passes through its
exit e1; in other words, e1 post-dominates ρ1 while ρ1 dominates e1. Moreover, regions cannot have
any partial overlap. If two regions have any nodes in common, they are either nested or in tandem.
The sparsity of regions allows us to reason about searching diversification effectively by examining
whether two inputs cover different regions.

Algorithm 2 presents the region partition algorithm. First, it uses a linear-time greedy algo-
rithm [41] дetAllSESEReдions to partition the flow graph of F into a set of regions R (Line 2).
However, the results are still not suitable for guiding parallel fuzzing and need further refinement.
For instance, regions with only one block are not worth exploring, but it is still valuable to explore
if the block contains other callees. Moreover, if two sequential regions are only connected by one
edge, then distinguishing them would not be necessary.

Example 4. In Figure 4, there is no need to distinguish R2 and R3 because R2 dominates R3. So, we

further refine the result R into R′ to eliminate unnecessary regions.

Specifically, the refinement step skips basic blocks that lack path divergence such as singe
successor (Line 7) and “if” statement without “else” branches (Line 10). Then, for each B’s successor
that is the entry of a region Rnew , the algorithm tries to iteratively expand Rnew by joining this
region with its predecessors (Line 15). Newly found regions are added to the results set R′ if it is
“valuable”, i.e., whether it contains sufficient code for exploring. If blocks inside Rnew contain at
least one callee, we view it as valuable; otherwise, if the number of blocks is less than 3 (cannot
form a simple flow graph with branches), we discard it (Line 17).
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Algorithm 2: Region Analysis
Input: Function F
Output :The result of region partition R

1 Function RegionPartition(F):
2 R← дetAllSESEReдions(F) ▷ initial region partition

3 R′ ← ∅
4 foreach B in F do
5 𝒮B ← Succ(B) ▷ successors of basic blocks

6 if ⋃︀𝒮B⋃︀ == 1 then
7 continue

8 else if ⋃︀𝒮B⋃︀ == 2 then
9 if postDominate(𝒮B(︀1⌋︀,𝒮B(︀0⌋︀) or postDominate(𝒮B(︀0⌋︀,𝒮B(︀1⌋︀) then
10 continue

11 foreach B in 𝒮B do
12 Rnew ← дetReдionFor(B,R)
13 E ← дetEntry(R)
14 if B == E then
15 Rnew ← expandReдion(Rnew )
16 if isValuableReдion(Rnew ) then
17 R′ ← R′ ∪ Rnew

18 return R′

Based on region analysis results, Kraken instruments the program binaries to give each region
a unique ID so that they can be identified during the fuzzing process. Since the entry block ρ1 of a
region R dominates all basic blocks inside R, we only instrument ρ1 to avoid redundant tracing.
During the execution, if ρ1 is covered, we record it in a shared bitmap to notify the fuzzer that R
has been covered.

3.3.2 ACO-based input selection. Single-node fuzzing usually prioritizes (“intensifies”) the so far
most promising input for mutation. However, parallel fuzzing also needs to take care of possible path
collisions. The main challenge here is how to prioritize inputs for fuzzing to balance intensification
and diversification to improve the overall efficiency (as illustrated in § 2.2).

Our key idea is to view the problem of input selection as a combinational optimization problem [35,
67, 81] and solve it optimally by existing meta-heuristics, which can be used to guide local search
algorithms towards promising regions of the search space containing high-quality solutions.

We leverage an effective meta-heuristic, the Ant Colony Optimization (ACO) [20] to regulate the
input selection. Specifically, we model the input selection as a graph traversal problem by making
each input an individual node and organizing them with a fully connected graph G. The graph is
symmetric, meaning that each input is connected from and to all the others. Then, selecting the
next input from the current one can be viewed as moving on the edge between them. Each edge is
annotated with a value that controls the probability of choosing it from all the other neighbors.

Example 5. In Figure 7, choosing the next input Ij from Ii can be viewed as moving on the edge Ei j .

The edge Ei j is associated with a value ai j(t) that controls the probability of choosing Ei j from
all the neighbor edges of Ii , which is defined as follows [21]:
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ai j(t) = (︀τi j(t)⌋︀α (︀ηi j⌋︀β (8)
where τi j(t) is the amount of the pheromone value on Ei j at time t , ηi j is the heuristic value that

denotes the benefit of choosing input Ij . α and β are two parameters controlling the relative weight
of the pheromone and heuristic values. In our current implementation, we let both of them be 1.
We set all incoming edges of input I to have the same pheromone value, denoting that the

probability of choosing I from any other inputs is the same, i.e., ∀j,k,ai j(t) = aik(t).
We define the value ηi j to reflect the favorableness of input Ij itself. Fuzzing favors inputs with

faster execution speed and smaller size [1], and we define ηi j as follows:

ηi j =
max(f actor) − f actor

max(f actor) −min(f actor)
(9)

where f actor = T (Ij) × Len(Ij), Tj and Lj are the execution time and the size of input Ij . We use
the max-min normalization [25] to obtain ηi j .
The parameter τi j(t) represents the learned desirability of choosing Ij from Ii and is updated

dynamically during the fuzzing process. The update is performed in two steps by applying the rule:

τi j(t) ← (1 − ρ)τi j(t) + ρ∆τi j(t) (10)
where ρ ∈ (0, 1⌋︀ is a parameter governing pheromone decay. It helps to forget previously poor

decisions and prevent Kraken from falling into the local minimum.
∆τi j(t) is the reward factor that depends on how well the chosen input Ij has performed. The

definition of ∆τi j(t) consists of two parts. First, we consider the number of new solutions found by
mutating Ij (denoted as Child(Ij)). Second, we consider the unique region coverage achieved by
Ij and Child(Ij). Specifically, for input Ij in a fuzzing node Fn , we retrieve the region coverage of
Ij and the overall region coverage of all other nodes except Fn . We then compute the number of
regions uniquely covered by Ij , denoted as RCj . We aggregate above definitions into the f actor
defined as follows:

f actor = ⋃︀Child(Ij)⋃︀ + RCIj +
i=0
∑
n
RCChild(Ij)i (11)

, and we normalize f actor to compute ∆τi j(t) = f actor
f actor+1 . Using ∆τi j(t) allows Kraken to

adaptively select inputs to balance diversification and intensification to maximize the overall code
coverage. If intensification brings more code coverage, Kraken leans to intensify similar inputs;
otherwise, Kraken tends to perform more diversified path searching.
Input selection rule. We use the pseudo random proportional [22] rule to make the next move
from an already chosen input Ii . Let q be a random variable uniformly distributed over (︀0, 1⌋︀, and
q0 ∈ (︀0, 1⌋︀ be a tunable parameter. Then the probability of choosing the next node Ij at time t is the
following if q ≤ q0:

pi j(t) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if j = arдmax ai j

0 otherwise
(12)

otherwise, when q > q0:

pi j(t) =
ai j

∑l∈𝒩i ail (t)
∀j ∈ 𝒩i (13)
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Table 1. Magma programs.

Program Version Command-line
libpng 1.6.38 libpng_read_fuzzer

libsndfile 1.2.0 sndfile_fuzzer @@
libtiff 4.1.0 tiff_read_rgba_fuzzer -M @@
libxml2 2.9.10 xmllint @@
lua 5.4.0 lua

openssl 3.0.0 asn1parse
php 8.0.0 php-fuzz-exif

poppler 0.88.0 pdf_fuzzer
sqlite 3.32.0 sqlite3_fuzz

Table 2. Real-world programs.

Program Version Command-line
harfbuzz 2.7.2 hb-subset-fuzzer @@
gpac 20200801 MP4Box -stdb -diso @@
dav1d 0.7.1 dav1d -o /dev/null –demuxer ivf –muxer yuv -i @@
bento4 1.6.0 mp4info –show-layout @@
faad2 2.10.0 faad -w -b 5 @@
faust 2.30.5 faust -lang ocpp -e -lcc -exp10 -lb -rb -mem -sd @@
jasper 2.0.20 jasper –output-format pnm –input @@
gravity 0.8.1 gravity @@
libjpeg 2020021 jpeg -oz -h -s 1x1,2x2,2x2 @@ /dev/null
nasm 2.15 nasm -fmacho64 -g -o /dev/null @@

This decision rule has a double function: when q ≤ q0, the decision rule exploits the knowledge
available about the problem by choosing the best local solution. When q > q0, it operates a biased
exploration according to Equation 13. Tuning q0 allows us to modulate the degree of exploration
and choose whether to concentrate the system’s activity on the best solutions or to explore the
search space. In our implementation, we let q0 = 0.5 to give them equal chances.

Example 6. In Figure 7, if the current input is Ii , and it has four neighbors: Ij , Ik , Ip and Iq . Each
edge that connects from Ii to one of its neighbors is annotated with a value computed by Equation 8.

Suppose the values of Ei j , Eik , Eip , and Eiq are 1, 2, 3, and 4, respectively. Then, at time t , if q ≤ q0,
Kraken will choose Iq as the next input; otherwise, the probability of choosing Ij , Ik , Ip , and Iq are 0.1,

0.2, 0.3, and 0.4, respectively.

4 Implementation

Kraken is implemented in C/C++ with over 10K lines of code and its overall architecture is similar
to AFL [1]. Kraken implements most of the AFL’s features such as input mutation, forkserver
executor, coverage instrumentation, etc. Similar to existing parallel fuzzers, Kraken runs multiple
fuzzer instances with individual processes simultaneously on multi-core machines. There exists
only one manager node, which is responsible for invoking multiple worker nodes as described in
§ 3.2. To start a new worker instance, the manager instance calls fork() to create a new process
and then calls execve() to run the fuzzing command. The manager will record the PID of all the
involved workers and call kill() to stop specific workers on demand. Our implementation replaces
the original seed prioritization heuristics employed by AFL with the ACO-based input selection
algorithm described in § 3.3. Kraken implements the region analysis and instrumentation based
on the RegionInfoPass [5] provided by the LLVM [43].

5 Evaluation

Our evaluation aims to answer the following questions.

● RQ1: Can Kraken achieve higher code coverage than than existing parallel fuzzers?
● RQ2: How is the bug detection capability of Kraken?
● RQ3: What are the contributions of Kraken’s main components?

RQ1 assesses the coverage performance of Kraken, which is the main metric for evaluating a
fuzzer [32]. We answer RQ2 to show that Kraken is practical for real-world bug detection. RQ3
aims at a finer evaluation of how the parallelism adjustment and ACO-based input selection help
improve Kraken’s effectiveness and show the importance of dynamic fuzzing strategy optimization.
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Fig. 8. Accumulated edge coverage by fuzzing with different number of CPU cores for 3 hours. AFL++-V uses

different power schedule strategies in sub-instances. Kraken-A is Kraken without ACO-based input selection.

Kraken-C is Kraken without parallelism degree adjustment.

5.1 Experimental Setup

Environment Setup. We evaluate Kraken on an Intel Xeon(R) computer (80 cores) with an
E5-1620 v3 CPU and 64GB of memory running Ubuntu 16.04 LTS.
Baseline Approaches. We compared Kraken with 8 state-of-the-art parallel fuzzers:
● AFL [1] is a well-known fuzzer with industrial strength. We follow its official document [2]
to set up parallel fuzzing by running only one main node and numerous secondary nodes.
● AFL++ [3] is a re-engineered fork of AFL and is actively maintained. By default, it also runs
parallel fuzzing with one main node and multiple secondary nodes.
● As suggested by AFL++’s official document [4], we also configure a variant of AFL++ that
uses different power scheduling methods [9] in secondary nodes, denoted as AFL++-V.
● perfAFL [77] is built up on AFL with newly designed system primitives.
● PAFL [47] modifies the original AFL by dividing the bitmap into intervals and makes different
fuzzer instances only focus on specific areas.
● AFL-EDGE [75] distributes mutually-exclusive but similarly-weighted tasks to sub-instances.
● AFLTeam [62] also divides the parallel fuzzing task into instances, it differs from AFL-EDGE
in that its program partition algorithm is based on the call graph.
● µFuzz [16] is a most recent work that redesigns parallel fuzzing withmicroservice architecture.

Apart from existing parallel fuzzers, we also compare Kraken with two of its ablations to study
the contribution of Kraken’s key components:
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Fig. 9. Edge coverage changes in 10 hours using 20 cores.

● Kraken-A is a variant of Kraken that adopts the single-node input selection strategy in all
sub-instances, similar to the naive parallel mode [1, 9, 26, 71, 76] discussed in § 2.1.
● Kraken-C is a variant of Kraken that does not perform parallelism degree adjustment, i.e., it
invokes all fuzzing instances at the beginning, similar to existing work [28, 29, 47, 75, 77, 83].

Benchmarks. We evaluate Kraken with both standard benchmarks and real-world programs.
We choose programs based on the following features: popularity in the community, frequency of
being used in the fuzzing evaluation, functionality diversity, and size of the codebase. For standard
benchmarks, we adopt all 9 programs in the popular fuzzing benchmark Magma [32], which has
been widely used by previous work [16, 24, 37, 39]. We also include 10 real-world programs that
are popular in the community and frequently used in fuzzing evaluation [11, 31, 44, 52, 56]. The
detailed versions and command line options are shown in Table 1 and Table 2. Programs whose
command-line options contain “@@” are general-purpose applications that read inputs from files,
while those that do not use “@@” are drivers specifically designed as fuzzer harnesses [32] and
read inputs from the stdin. In total, we use 19 programs in the evaluation.
Configurations. To evaluate the code coverage, we run each fuzzer with 10, 20, 30, and 40 cores
for 3 hours (wall time, which is the real-world time elapsed) using the same initial inputs, which
equals 30, 60, 90, and 120 hours of single-node fuzzing campaign. We use a maximum of 40 cores,
considering both the hardware limit and the duration of the experiments. Although previous
work usually uses 24 hours as the time budget, we found that using multiple CPU cores could
significantly reduce such 24-hour requirements. Following prior work [62], we also include the
results of running compared fuzzers with 20 cores for 10 hours to support our claim. For the bug
detection experiments, we let each fuzzer run for 4 hours with 20 cores. We repeat each experiment
5 times and plot the median value in the charts to mitigate the impact of randomness.
Metrics. We follow many prior studies [11, 38, 66] by using the edge coverage as the code coverage.
We also measure the widely adopted metrics [9, 50], i.e., the number of unique crashes, to compare
the performance of each fuzzer. We filter duplicate crashes by manually analyzing whether the
stack trace provided by AddressSanitizer [65] is unique.

5.2 RQ1: Code Coverage

In this section, we compare Krakenwith 8 state-of-the-art parallel fuzzers in terms of code coverage.
We run each fuzzer for 3 hours using different numbers of CPU cores (10, 20, 30, and 40) with the
same initial seed corpus and compare their achieved edge coverage. Figure 8 shows the accumulated
edge coverage results on 12 benchmark programs. The results for Kraken’s two ablations will be
discussed in § 5.4. In total, Kraken covers 54.7% more edges than all baseline fuzzers. Specifically,
Kraken achieves 75.9%, 29.5%, 32.8%, 34.2%, 36.3%, 158.9%, 29.5%, and 40.3% higher code coverage
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Table 3. Bug detection results by running 4 hours with 20 cores. #Crash represents the number of unique

crashes found by each fuzzer. #CVE shows the number of CVEs contained in the unique crashes.

Program Kraken AFL AFL++ AFL++-V perfAFL AFL-EDGE PAFL AFLTeam
#Crash #CVE #Crash #CVE #Crash #CVE #Crash #CVE #Crash #CVE #Crash #CVE #Crash #CVE #Crash #CVE

bento4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3
faad2 6 4 2 1 5 3 6 4 4 4 5 4 0 0 4 4
faust 2 0 1 0 0 0 2 0 2 0 2 0 3 0 1 0
gpac 2 2 1 1 0 0 0 0 1 1 0 0 1 1 0 0
jasper 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gravity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
libjpeg 8 2 5 1 8 1 10 2 7 2 8 2 4 1 7 2
nasm 10 0 4 0 4 0 2 0 4 0 3 0 3 0 3 0
Total 30 10 15 5 19 6 22 8 20 9 20 8 13 4 18 9

than AFL [1], AFL++ [3], AFL++-V, AFL-EDGE [75], µFuzz [16], PAFL [47], perfAFL [77], and
AFLTeam [62] respectively on average. Kraken demonstrates superior performance across projects
since it is able to adjust the fuzzing strategy according to programs adaptively.
Parallel fuzzers such as AFL, AFL++, and perfAFL adopt the single-node fuzzing strategy in all

instances. As shown in the figure, they all show unstable performance across programs. For example,
AFL++ outperforms AFL on poppler while AFL achieves higher edge coverage than AFL++ on
gpac. Several fuzzers, such as AFL-EDGE and PAFL, focus on maximizing the search diversity in
sub-instances. However, such a strategy does not fit all programs. For example, AFL-EDGE performs
better than all the other baselines when fuzzing lua; however, it performs worse than AFL++ and
µFuzz on poppler. µFuzz redesigns parallel fuzzing with micro-service architecture to improve the
fuzzing efficiency. However, its input selection strategy is still based on the single-node fuzzing
ones and is purely static. Therefore, it only outperforms other baselines on several projects such as
poppler and php. On sqlite, µFuzz only performs better than PAFL. Although AFL++-V adopts
different power schedule strategies in instances, the strategies remain unchanged throughout the
fuzzing process. Therefore, it still suffers from the same limitations as other baselines.

Moreover, we observe that the performance of Kraken increases nearly linearly with the number
of maximum CPU cores adopted, and different initial configurations do not affect the final results
too much. Such results demonstrate the benefit of the program-adaptive technique, i.e., the fuzzing
strategy can truly adapt to different programs. For other baselines, the performance could vary
between configurations. For example, several fuzzers achieve monotonic performance increase
on sqlite. The coverage achieved by µFuzz on php reaches a maximum of 20 cores but drops
with more CPU cores. The coverage achieved by AFL-EDGE and AFL on gpac even decreases
monotonically with the used CPUs.
Although our method outperforms other fuzzers on most of the evaluated programs, it is still

possible for Kraken to be defeated by others; for example, it does not achieve the best results
on libxml2. As discussed in § 1, since determining the real “optimal strategy” is an undecidable
problem, Kraken actually tries to find the best solution by evaluating the objective functions.
10-hours evaluation. We also evaluate Kraken against its baselines in terms of longer-term
experiments. Following prior work [62], we let each fuzzer run with 20 cores for 10 hours and
compare the final edge coverage, and the results are shown in Figure 9 (complete data is shown in [6]).
In total, Kraken covers 43.9% more edges than other baselines. Specifically, Kraken achieves 96.9%,
35.2%, 35.2%, 26.8%, 6.3%, 105.2%, 19.7%, and 26.6% higher code coverage than AFL [1], AFL++ [3],
AFL++-V, AFL-EDGE [75], µFuzz [16], PAFL [47], perfAFL [77], and AFLTeam [62] respectively on
average. The results also support our claim that it is feasible to evaluate parallel fuzzing with a
shorter time budget (§ 5.1) because the edge coverage nearly saturates after 3 hours. On average,
the edge coverage only increases about 15% during the fuzzing campaign between 3 to 10 hours.
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(d) 40 cores.

Fig. 10. Parallelism degree changes within 3 hours under different number of maximum allowed CPUs.
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Fig. 11. Edge coverage changes in 3 hours using 30 cores.

As shown in Figure 9a, the edge coverage achieved by all fuzzers on dav1d only increases about
4.7% on average after 3 hours. For openssl, the edge coverage even remains unchanged for most
baselines after 3 hours.

5.3 RQ2: Bug Detection

Kraken has found 192 new vulnerabilities in 37 real-world projects, and 119 of them are assigned
with CVE IDs1. Target projects contain widely tested ones such as FFmpeg, system libraries like
Ncurses, and popular third-party libraries, including libjpeg.

In this section, we compare Kraken with baseline fuzzers in terms of their bug detection ability.
We omit the result of µFuzz here since it does not support saving crash inputs to the disk, and
we are unable to examine crashes manually. We adopt 8 popular real-world programs for the
experiment. The detailed versions and command line options are shown in Table 2. Kraken has
found numerous bugs in those programs, and some of them are assigned with CVE IDs. To avoid
possible duplicate crashes, we manually examine all crash inputs found by each fuzzer and keep
those that have unique stack traces. Table 3 shows the results of bug detection by running each
fuzzers with 20 cores for 4 hours. As shown in the Table, Kraken finds 30 unique crashes in 4
hours, while AFL, AFL++, AFL++-V, perfAFL, AFL-EDGE, PAFL, and AFLTeam find only 15, 19, 22,
20, 20, 13, and 18 crashes, respectively. Among all the identified crashes, Kraken finds 10 CVEs,
while AFL, AFL++, AFL++-V, perfAFL, AFL-EDGE, PAFL, and AFLTeam find only 5, 6, 8, 9, 8, 4, and
9 CVEs, respectively. Moreover, most baselines can only find the subset of CVEs found by Kraken,
except for AFLTeam, which finds one more CVE than Kraken on bento4. On average, Kraken
can find 70.2% more crashes and 103.2% more CVEs than other baselines.

1Details are shown in [6].
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5.4 RQ3: Ablation Study

In this section, we study the contribution of Kraken’s key components to the final fuzzing result.
Parallelism adjustment. To understand the contribution of parallelism adjustment, we configure
Kraken to invoke all fuzzing instances at the beginning, denoted as Kraken-C. As shown in
Figure 8, Kraken achieves 21% more edge coverage than Kraken-C on average, showing that the
parallelism adjustment algorithm lets Kraken adapt to different programs effectively.

We further analyze the change in the number of running instances during fuzzing programs used
in § 5.2. Due to space limitation, we only show the results for 6 programs in Figure 10, grouped by
the maximum CPUs allowed (complete data is in [6]). We draw two main conclusions from the
results.

First, the algorithm is able to adaptively optimize the parallelism degree to achieve better perfor-
mance throughout the whole fuzzing process consistently. As shown in Figure 10, while Kraken
uses all available CPUs for programs under the 10-core configuration (Figure 10a), with more
available CPUs, the figure shows evident simulated annealing processes as the algorithm adjusts
the number of CPUs according to the estimated efficiency. For example, Figure 10 shows that the
optimal CPU number for fuzzing gpac is around 10 to 11. Although Kraken does not take up all
the CPU resources when testing gpac, it still achieves higher code coverage than others (Figure 8k).
For sqlite, Kraken estimates that the optimal number of cores is around 25. Therefore, it uses
the maximum number of CPUs for fuzzing under the 10- and 20-core configurations (Figure 10a
and Figure 10b), while using the same number (27) of CPUs under the 10- and 20-core config-
urations (Figure 10c and Figure 10d). This phenomenon again demonstrates the benefit of the
program-adaptive technique, i.e., the fuzzing strategy can truly adapt to different programs, which
is the key to solving the unstable performance issues discussed in § 2.2.

Second, the simulated annealing process described in § 3.2.2 is able to converge quickly, and the
time spent for convergence is proportional to the maximum number of allowed CPUs. Intuitively, a
larger number of CPUs means a larger search space for the algorithm, which requires more time to
explore and find the global optimal solution. Our experimental results in Figure 10 show that the
algorithm only takes about 30 minutes more to converge when there are ten more available CPUs,
which is practical enough for real-world usage. Take the results for gpac as an example. Under the
20-core configuration, the algorithm converges with less than 0.7 hours (Figure 10b). The time spent
on finding the optimal solution under the 30-core configuration is about one hour (Figure 10c),
and the time for 40 cores is about 1.5 hours (Figure 10d). Moreover, the algorithm is performing
the hill-climbing process at first because increasing the core number at the beginning has a more
positive effect on the fuzzing process. Then, it explores around the global optimal solution to
prevent falling into a local minimum. After all possible core numbers are tested, the optimal core
number shows obvious superiority compared with others, so the number of cores does not change.
As shown in Figure 10, under all configurations, the core number increases very quickly at the
beginning and slows down afterward, which fits the illustration in Figure 6.

We also measured the runtime overhead of the parallelism adjustment. Specifically, we counted
the total time spent on adding/killing instances and efficiency estimation under the 40-core config-
uration. Within 3 hours, 24 seconds are spent on parallelism adjustment on average, which only
accounts for 0.22% of the total running time.
ACO-based input selection. To understand the contribution of the ACO-based input selection,
we configure Kraken to adopt the single-node input selection strategy in all sub-instances, denoted
as Kraken-A. As shown in Figure 8, Kraken achieves 6.2% more edge coverage than Kraken-A
on average, showing that our algorithm could adapt to different programs effectively. Figure 11
shows the edge coverage changes within 3 hours using 30 CPU cores on 4 programs used in
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Fig. 12. Average contribution ratio by each instance of fuzzing programs used in § 5.2.

Figure 8 (complete data is shown in [6]). As shown in the figure, at the beginning, the edge coverage
increases similarly between different fuzzers. However, without the ACO-based input selection,
the coverage increase gets slower with time, and the final coverage achieved by Kraken-A is still
lower than Kraken.

We further studied the contribution of each instance to the global code coverage to demonstrate
how the input selection algorithm reduces solution overlaps. Specifically, we adopt 6 fuzzers (AFL++,
AFL++-V, PAFL, AFL-EDGE, Kraken-A, and Kraken) that perform input synchronization in a
centralized way, i.e., there exists only one instance that fetches inputs from all the other ones while
the remaining instances only fetch inputs from the central node. This allows us to reason about
whether the solutions found by each instance could increase the global code coverage. Figure 12
shows the results of the average contribution ratio of each instance of fuzzing programs used in
§ 5.2 with 10, 20, 30, and 40 CPU cores for 3 hours. The y-axis represents the average portion of
inputs that increase the global coverage in all instances.
The figure shows that Kraken achieves an average contribution ratio of 59.7%, outperforming

AFL++, AFL++-V, AFL-EDGE, PAFL, and Kraken-A by 41.5%, 44.4%, 25.8%, 38.2%, and 16%, re-
spectively. AFL-EDGE achieves a higher average ratio than AFL++ (33.8% vs. 18.1%) because it
focuses on maximizing the search diversity in sub-instances by splitting the program based on
paths. Although PAFL also tries to improve search diversity, its diversity measurement is purely
based on the bitmap, which is much less effective than that of AFL-EDGE. Therefore, PAFL performs
the worst among compared fuzzers, with an average contribution ratio of 21.4%. Thanks to the
parallelism adjustment algorithm, both Kraken-A and Kraken avoid much more redundancy than
all the other compared fuzzers. Kraken further outperforms Kraken-A by 16% on average because
the ACO-based input selection could better balance search diversification and intensification.

In terms of runtime overhead, within 3 hours, 28 seconds are spent on ACO-based input selection
on average, which only accounts for 0.26% of the total running time.

6 Related Work

Apart from existing parallel fuzzers discussed in § 2.1, this section surveys other related work. They
all focus on improving the efficiency of single-node fuzzing, which is orthogonal to our work and
can be integrated with Kraken for better performance.
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Controlled input generation. Existing fuzzers adopt different approaches to generate high-
quality inputs for testing the target programs. They could utilize existing grammar specifications [30,
58] or file format information [60] to generate inputs that are both syntactically and semantically
correct. Some methods leverage dynamic taint analysis [11, 63, 73] or lightweight mutation-based
taint inference [23, 40, 48, 61, 78] to track which input parts affect program instructions for
guiding input mutation. Some studies [18, 36] make use of sophisticated program static analysis
techniques [68, 69] to generate useful test cases. Other fuzzers [14, 17, 38, 79] use symbolic execution
or concolic execution to generate inputs that can get through complex program conditions.
Input scheduling. Existing work also tries to improve the input scheduling algorithm to facilitate
fuzzing. Some approaches [26, 51] design more fine-grained fitness functions to evaluate and
schedule inputs. Some methods [9, 27, 50, 74] leverage various optimization algorithms or heuristics
to prioritize promising inputs for increasing code coverage.
Instrumentation optimization. Several static binary instrumentation methods [19, 55, 80] are
proposed to perform binary-only coverage-guided fuzzing. Other approaches [34, 54, 72, 82] reduce
instrumentation costs by selective or on-demand coverage instrumentation.

7 Conclusion

We propose a new program-adaptive parallel fuzzer Kraken, which achieves higher code coverage
and detects more bugs than existing work. It also detects hundreds of real-world bugs.

Data Availability

We will open source Kraken at https://github.com/seviezhou/Kraken. We will also include the raw
data of evaluations in § 5.2, § 5.3 and § 5.4, including a pdf format supplemental material.
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